
Finding Limits Graphically
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When we talk about the limit of f(x) as x approaches a,
there are actually two main ways in which we can
let x approach a.

We can approach a through values that are less
than a, or we can approach a through values that
are greater than a.

We call each approach a one-sided limit.

We can approach a either from below (the left or 
negative side), or we can approach a from above 
(the right or positive side).



For the general limit to exist, both one-sided limits
must exist, and they must be equal.



For the general limit to exist, both one-sided limits
must exist, and they must be equal. 

For the rest of this presentation, we’ll try to evaluate
limits by studying the graphs of functions.
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Note that infinity is not an
actual number.  By writing
it, we are just explaining 
how the limit fails to exist.
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If we have a piecewise-defined function, there are
two ways to enter it in our calculator.
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Sometimes, though, the pieces of our piecewise
-defined function will connect, and the limit at that
point will exist.
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