Finding Limits Graphically

Recall how we defined the limit of a function in our last presentation.

Recall how we defined the limit of a function in our last presentation.

Let $f(x)$ be a function. Then the limit of $f(x)$ as x approaches a equals L is defined as follows:
$\lim _{x \rightarrow a} f(x)=L$ means that as x gets close to, but not equal to, a, the values of $f(x)$ get closer and closer to L.

When we talk about the limit of $f(x)$ as x approaches a, there are actually two main ways in which we can let x approach a.

Let $f(x)$ be a function. Then the limit of $f(x)$ as x approaches a equals L is defined as follows:
$\lim _{x \rightarrow a} f(x)=L$ means that as x gets close to, but not equal to, a, the values of $f(x)$ get closer and closer to L.

When we talk about the limit of $f(x)$ as x approaches a, there are actually two main ways in which we can let x approach a.

We can approach a through values that are less than a, or we can approach a through values that are greater than a.

When we talk about the limit of $f(x)$ as x approaches a, there are actually two main ways in which we can let x approach a.

We can approach a through values that are less than a, or we can approach a through values that are greater than a.

We call each approach a one-sided limit.

When we talk about the limit of $f(x)$ as x approaches a, there are actually two main ways in which we can let x approach a.

We can approach a through values that are less than a, or we can approach a through values that are greater than a.

We call each approach a one-sided limit.
We can approach a either from below (the left or negative side), or we can approach a from above (the right or positive side).

For the general limit to exist, both one-sided limits must exist, and they must be equal.

For the general limit to exist, both one-sided limits must exist, and they must be equal.

For the rest of this presentation, we'll try to evaluate limits by studying the graphs of functions.

EXAMPLE:

$$
\begin{aligned}
& f(x)=x^{2}+1 \\
& \lim _{x \rightarrow 0}\left(x^{2}+1\right)=?
\end{aligned}
$$

EXAMPLE:

$$
\begin{gathered}
f(x)=x^{2}+1 \\
\lim _{x \rightarrow 0}\left(x^{2}+1\right)=?
\end{gathered}
$$

EXAMPLE:

$$
\begin{gathered}
f(x)=x^{2}+1 \\
\lim _{x \rightarrow 0}\left(x^{2}+1\right)=?
\end{gathered}
$$

$\lim _{x \rightarrow 0^{-}}\left(x^{2}+1\right)=1$
$\lim _{x \rightarrow 0^{+}}\left(x^{2}+1\right)=1$
$x \rightarrow 0^{+}$
$\lim _{x \rightarrow 0}\left(x^{2}+1\right)=1$

EXAMPLE:

$$
\begin{gathered}
f(x)=\frac{1}{x^{2}} \\
\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}\right)=?
\end{gathered}
$$

EXAMPLE:

$$
\begin{aligned}
& f(x)=\frac{1}{x^{2}} \\
& \lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}\right)=?
\end{aligned}
$$

EXAMPLE:

$$
\begin{aligned}
& f(x)=\frac{1}{x^{2}} \\
& \lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}\right)=? \\
& \quad \lim _{x \rightarrow 0^{-}}\left(\frac{1}{x^{2}}\right)=\infty \\
& \quad \lim _{x \rightarrow 0^{+}}\left(\frac{1}{x^{2}}\right)=\infty \\
& \quad \lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}\right)=\infty
\end{aligned}
$$

EXAMPLE:

$$
\begin{aligned}
& f(x)=\frac{1}{x^{2}} \\
& \lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}\right)=\text { ? } \\
& \lim _{x \rightarrow 0^{-}}\left(\frac{1}{x^{2}}\right)=\infty \\
& \lim _{x \rightarrow 0^{+}}\left(\frac{1}{x^{2}}\right)=\infty \\
& \lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}\right)=\infty \\
& \text { Note that infinity is not an } \\
& \text { actual number. By writing } \\
& \text { it, we are just explaining } \\
& \text { how the limit fails to exist. }
\end{aligned}
$$

EXAMPLE:

$$
\begin{gathered}
f(x)=\frac{1}{x} \\
\lim _{x \rightarrow 0}\left(\frac{1}{x}\right)=?
\end{gathered}
$$

EXAMPLE:

$$
\begin{gathered}
f(x)=\frac{1}{x} \\
\lim _{x \rightarrow 0}\left(\frac{1}{x}\right)=?
\end{gathered}
$$

EXAMPLE:

$$
\begin{aligned}
& f(x)=\frac{1}{x} \\
& \lim _{x \rightarrow 0}\left(\frac{1}{x}\right)=\text { ? } \\
& \text { F1oti Fiote Fiots }
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}\right)=\infty \\
& \lim _{x \rightarrow 0}\left(\frac{1}{x}\right)=\text { does not exist }
\end{aligned}
$$

If we have a piecewise-defined function, there are two ways to enter it in our calculator.

$$
f(x)= \begin{cases}x^{2}-1 & \text { if } x \leq 1 \\ x & \text { if } x>1\end{cases}
$$

$$
\lim _{x \rightarrow 1} f(x)=?
$$

If we have a piecewise-defined function, there are two ways to enter it in our calculator.

$$
\begin{aligned}
& f(x)= \begin{cases}x^{2}-1 & \text { if } x \leq 1 \\
x & \text { if } x>1\end{cases}
\end{aligned}
$$

$$
\lim _{x \rightarrow 1} f(x)=?
$$

If we have a piecewise-defined function, there are two ways to enter it in our calculator.

$$
f(x)= \begin{cases}x^{2}-1 & \text { if } x \leq 1 \\ x & \text { if } x>1\end{cases}
$$

$$
\lim _{x \rightarrow 1} f(x)=\text { ? }
$$

If we have a piecewise-defined function, there are two ways to enter it in our calculator.

$$
f(x)= \begin{cases}x^{2}-1 & \text { if } x \leq 1 \\ x & \text { if } x>1\end{cases}
$$

$$
\lim _{x \rightarrow 1} f(x)=\text { ? }
$$

If we have a piecewise-defined function, there are two ways to enter it in our calculator.

$$
f(x)= \begin{cases}x^{2}-1 & \text { if } x \leq 1 \\ x & \text { if } x>1\end{cases}
$$

$$
\lim _{x \rightarrow 1} f(x)=?
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x)=0 \\
& \lim _{x \rightarrow 1^{+}} f(x)=1 \\
& \lim _{x \rightarrow 1} f(x)=\text { does not exist }
\end{aligned}
$$

Sometimes, though, the pieces of our piecewise -defined function will connect, and the limit at that point will exist.

$$
\begin{aligned}
& f(x)= \begin{cases}-x+1 & \text { if } x \leq 1 \\
x-1 & \text { if } x>1\end{cases} \\
& \lim _{x \rightarrow 1} f(x)=?
\end{aligned}
$$

Sometimes, though, the pieces of our piecewise -defined function will connect, and the limit at that point will exist.

$$
\begin{aligned}
& f(x)= \begin{cases}-x+1 & \text { if } x \leq 1 \\
x-1 & \text { if } x>1\end{cases} \\
& \lim _{x \rightarrow 1} f(x)=?
\end{aligned}
$$

Sometimes, though, the pieces of our piecewise -defined function will connect, and the limit at that point will exist.

$$
\begin{gathered}
f(x)= \begin{cases}-x+1 & \text { if } x \leq 1 \\
x-1 & \text { if } x>1\end{cases} \\
\lim _{x \rightarrow 1} f(x)=? \\
\lim _{x \rightarrow 1^{-}} f(x)=0 \\
\lim _{x \rightarrow 1^{+}} f(x)=0 \\
\lim _{x \rightarrow 1} f(x)=0
\end{gathered}
$$

