Finding Limits Graphically

Recall how we defined the limit of a function in our last presentation.

Recall how we defined the limit of a function in our last presentation.

Let f(x) be a function. Then the limit of f(x) as x approaches a equals L is defined as follows:

 $\lim_{x \to a} f(x) = L \text{ means that as } x \text{ gets close to, but not equal to, } a,$ the values of f(x) get closer and closer to L.

Let f(x) be a function. Then the limit of f(x) as x approaches a equals L is defined as follows:

 $\lim_{x \to a} f(x) = L \text{ means that as } x \text{ gets close to, but not equal to, } a,$ the values of f(x) get closer and closer to L.

We can approach *a* through values that are less than *a*, or we can approach *a* through values that are greater than *a*.

We can approach *a* through values that are less than *a*, or we can approach *a* through values that are greater than *a*.

We call each approach a one-sided limit.

We can approach *a* through values that are less than *a*, or we can approach *a* through values that are greater than *a*.

We call each approach a *one-sided limit*.

We can approach *a* either from below (the left or negative side), or we can approach *a* from above (the right or positive side).

For the general limit to exist, both one-sided limits must exist, and they must be equal.

For the general limit to exist, both one-sided limits must exist, and they must be equal.

For the rest of this presentation, we'll try to evaluate limits by studying the graphs of functions.

$$f(x) = x^{2} + 1$$

 $\lim_{x \to 0} (x^{2} + 1) = ?$

$$f(x) = x^{2} + 1$$
$$\lim_{x \to 0} (x^{2} + 1) = ?$$

$$f(x) = x^{2} + 1$$
$$\lim_{x \to 0} (x^{2} + 1) = ?$$

$$\lim_{x \to 0^{-}} (x^{2} + 1) = 1$$
$$\lim_{x \to 0^{+}} (x^{2} + 1) = 1$$
$$\lim_{x \to 0} (x^{2} + 1) = 1$$

Ploti Plot2	Plot3	
- <u>\Y</u> 1∎1/X2		
NY 2 =		
\Y4=		
∖Ýs=		
NY6=		
NY7=		

Note that infinity is not an actual number. By writing it, we are just explaining how the limit fails to exist.

$$f(x) = \frac{1}{x}$$
$$\lim_{x \to 0} \left(\frac{1}{x}\right) = ?$$

Plot1	P1ot2	P1ot3	
NY1∎:	17X -		
∖Ý2=			
$\sqrt{Y_3} = 1$			
<Ϋ́4=			
$\sqrt{Y_5} = 1$			
∖Ý6=			
< <u>Ŷ</u> 2=			

$$f(x) = \begin{cases} x^2 - 1 & \text{if } x \le 1 \\ x & \text{if } x > 1 \end{cases}$$

 $\lim_{x \to 1} f(x) = ?$

$$f(x) = \begin{cases} x^2 - 1 & \text{if } x \le 1 \\ x & \text{if } x > 1 \end{cases}$$

Plot1 Plot2 Plot3
\Y+∎(X2-1)(X≤1)
\Y2■(X)(X>1)
<Υ3=
<Ϋ́4=
×Ύs=
×Ύ6=
\Υ7=

 $\lim_{x \to 1} f(x) = ?$

$$f(x) = \begin{cases} x^2 - 1 & \text{if } x \le 1 \\ x & \text{if } x > 1 \end{cases}$$

 $\lim_{x \to 1} f(x) = ?$

Γ	Plot1 Plot2 Plot3
	\Y1∎(X2-1)(X≤1)
	<Ÿ2∎(X)(X>1)
	<Υ3=
	∖Y4=
	<Υs=
	∖Ye=
	\Y7=

Or

Plot1 Plot2 Plot3 \Y18(X2-1)(X≤1)+
(X)(X)1)
NY2=
NY3=
\Y4= \Vr=
NYSH NVat
110-

$$f(x) = \begin{cases} x^2 - 1 & \text{if } x \le 1 \\ x & \text{if } x > 1 \end{cases}$$

Or

 $\lim_{x \to 1} f(x) = ?$

$$f(x) = \begin{cases} x^2 - 1 & \text{if } x \le 1 \\ x & \text{if } x > 1 \end{cases}$$

Plot1 Plot2 Plot3 $\Y_1 = (X^2 - 1) (X \le 1)$ $Y_2 = (X) (X > 1)$ $Y_3 =$ $Y_4 =$ $Y_5 =$ $Y_6 =$ $Y_7 =$

Or

	lot2 P1ot3 2−1)(X≤1)+
(8)(8)	1)
\Y2= \Y2=	
\\Y4=	
∖Ýs=	
∖Y6=	

 $\lim_{x \to 1} f(x) = ?$ $\lim_{x \to 1} f(x) = 0$

$$\lim_{x \to 1^{+}} f(x) = 1$$
$$\lim_{x \to 1^{+}} f(x) = \text{does not exist}$$

Sometimes, though, the pieces of our *piecewise -defined function* will connect, and the limit at that point will exist.

 $f(x) = \begin{cases} -x+1 & \text{if } x \le 1\\ x-1 & \text{if } x > 1 \end{cases}$ $\lim_{x \to 1} f(x) = ?$

Sometimes, though, the pieces of our *piecewise -defined function* will connect, and the limit at that point will exist.

$$f(x) = \begin{cases} -x+1 & \text{if } x \le 1\\ x-1 & \text{if } x > 1 \end{cases}$$

 $\lim_{x \to 1} f(x) = ?$

Sometimes, though, the pieces of our *piecewise -defined function* will connect, and the limit at that point will exist.

$$f(x) = \begin{cases} -x+1 & \text{if } x \le 1\\ x-1 & \text{if } x > 1 \end{cases}$$
$$\lim_{x \to \infty} f(x) = ?$$

 $x \rightarrow 1$

 $\lim_{x \to 1^{-}} f(x) = 0$ $\lim_{x \to 1^{+}} f(x) = 0$ $\lim_{x \to 1} f(x) = 0$

