Finding Limits Algebraically

If we know that our function is continuous at a point, then we can evaluate the limit as x approaches a simply by plugging in a for x. Looking at a graph often makes it easy to determine if a function is continuous at all real numbers.

If we know that our function is continuous at a point, then we can evaluate the limit as x approaches a simply by plugging in a for x. Looking at a graph often makes it easy to determine if a function is continuous at all real numbers.

$$
y=f(x)=x^{3}-x
$$

Graph is continuous
at all points.

If we know that our function is continuous at a point, then we can evaluate the limit as x approaches a simply by plugging in a for x. Looking at a graph often makes it easy to determine if a function is continuous at all real numbers.

$$
\begin{aligned}
& y=f(x)=x^{3}-x \\
& \lim _{x \rightarrow 2}\left(x^{3}-x\right)=2^{3}-2 \\
& =8-2=6
\end{aligned}
$$

Graph is continuous
at all points.

If our function is undefined at a point, then the graph will certainly have a discontinuity at that point Furthermore, examining the graph will often give us information about various limits.

If our function is undefined at a point, then the graph will certainly have a discontinuity at that point Furthermore, examining the graph will often give us information about various limits.

$$
y=f(x)=\frac{1}{x^{2}}
$$

Discontinuity at zero.

If our function is undefined at a point, then the graph will certainly have a discontinuity at that point Furthermore, examining the graph will often give us information about various limits.

$$
y=f(x)=\frac{1}{x^{2}}
$$

Discontinuity at zero.

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty
$$

Notice that since infinity is not a number, the limit actually fails to exist. However, by stating that the limit is infinity, we are showing specifically how it fails to exist.

$$
y=f(x)=\frac{1}{x^{2}}
$$

Discontinuity at zero.

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty
$$

If we want the limit of our function as x approaches 2 , we can just plug in 2 for x since the function is continuous at this point.

$$
\begin{aligned}
& y=f(x)=\frac{1}{x^{2}} \\
& \lim _{x \rightarrow 2} \frac{1}{x^{2}}=\frac{1}{2^{2}}=\frac{1}{4}
\end{aligned}
$$

Discontinuity at zero.
Continuous at $x=2$.

If we look at $y=1 / x$, then we once again have a discontinuity at zero.

$$
y=f(x)=\frac{1}{x}
$$

Discontinuity at zero.

However, this time the graph goes to +infinity from the right hand side and -infinity from the left hand side. Thus, the most we can state is that the limit does not exist.

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& \lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty \\
& \lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty \\
& \lim _{x \rightarrow 0} \frac{1}{x}=\text { does not exist }
\end{aligned}
$$

Discontinuity at zero.

Nonetheless, we can still evaluate the limit at nonzero points simply by plugging in.

$$
\begin{aligned}
& y=f(x)=\frac{1}{x} \\
& \lim _{x \rightarrow-3}\left(\frac{1}{x}\right)=-\frac{1}{3}
\end{aligned}
$$

Discontinuity at zero.
Continuous at $x=-3$.

If a function has a discontinuity at a point, but the graph doesn't go to plus or minus infinity, then we can try simplifying the expression algebraically before evaluating. (NOTE: Graph using Zoom Decimal)

$$
y=f(x)=\frac{x^{2}-1}{x-1}
$$

Discontinuity at 1 .

If a function has a discontinuity at a point, but the graph doesn't go to plus or minus infinity, then we can try simplifying the expression algebraically before evaluating. (NOTE: Graph using Zoom Decimal)

$$
y=f(x)=\frac{x^{2}-1}{x-1}
$$

Discontinuity at 1.

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} \frac{(x+1)(x-1)}{(x-1)}=\lim _{x \rightarrow 1}(x+1)=1+1=2
$$

Notice that this function is continuous at values that are not equal to 1, and we evaluate limits at those points by just plugging in.

$$
y=f(x)=\frac{x^{2}-1}{x-1}
$$

Discontinuity at 1 .
Continuous at $x=0$.

$$
\lim _{x \rightarrow 0} \frac{x^{2}-1}{x-1}=\frac{0^{2}-1}{0-1}=\frac{-1}{-1}=1
$$

If you are unable to simplify an expression by factoring, then try long division.

$$
y=f(x)=\frac{x^{3}-x^{2}+x-1}{x-1}
$$

Discontinuity at 1.

$$
\lim _{x \rightarrow 1} \frac{x^{3}-x^{2}+x-1}{x-1}=?
$$

$$
\begin{array}{r}
x - 1 \longdiv { x ^ { 2 } + 1 } \\
\frac{-x^{3}+x^{2}}{x-1}
\end{array}
$$

Discontinuity at 1.

$$
\lim _{x \rightarrow 1} \frac{x^{3}-x^{2}+x-1}{x-1}=\lim _{x \rightarrow 1}\left(x^{2}+1\right)=1^{2}+1=2
$$

Of course, an alternative way to solve this problem is by using factoring by grouping.

$$
y=f(x)=\frac{x^{3}-x^{2}+x-1}{x-1}
$$

Discontinuity at 1.
$\lim _{x \rightarrow 1} \frac{x^{3}-x^{2}+x-1}{x-1}=\lim _{x \rightarrow 1} \frac{x^{2}(x-1)+1 \cdot(x-1)}{x-1}$
$=\lim _{x \rightarrow 1} \frac{\left(x^{2}+1\right)(x-1)}{(x-1)}=\lim _{x \rightarrow 1}\left(x^{2}+1\right)=1^{2}+1=2$

Another type of problem you might have to deal with is a piecewise-defined function.

$y=f(x)= \begin{cases}x^{2}+2 & \text { if } x<1 \\ 2 x-1 & \text { if } x \geq 1\end{cases}$

Discontinuity at 1.

Here it's easy to see that the general limit fails to exist

 as x approaches 1 .
$y=f(x)= \begin{cases}x^{2}+2 & \text { if } x<1 \\ 2 x-1 & \text { if } x \geq 1\end{cases}$

Discontinuity at 1.

We can also look at the two one-sided limits separately and show that they lead to different values.

$y=f(x)= \begin{cases}x^{2}+2 & \text { if } x<1 \\ 2 x-1 & \text { if } x \geq 1\end{cases}$

Discontinuity at 1.

We can also look at the two one-sided limits separately and show that they lead to different values.

$y=f(x)= \begin{cases}x^{2}+2 & \text { if } x<1 \\ 2 x-1 & \text { if } x \geq 1\end{cases}$
$\lim \left(x^{2}+2\right)=1^{2}+2=3$
$X \rightarrow 1^{-}$
$\lim (2 x-1)=2 \cdot 1-1=1$
$x \rightarrow 1^{+}$
$\lim _{x \rightarrow 1} f(x)=$ does not exist $x \rightarrow 1$

On the other hand, if our pieces are connected, then the function is continuous and you can just plug in values to get the limit.

$y=f(x)= \begin{cases}-x+1 & \text { if } x<1 \\ x-1 & \text { if } x \geq 1\end{cases}$

$\lim _{x 1^{-}}(-x+1)=-1+1=0$
$x \rightarrow 1^{-}$
$\lim (x-1)=1-1=0$
$x \rightarrow 1^{+}$
$\lim f(x)=0$
$x \rightarrow 1$

If you are taking a limit of a rational function as x goes to plus or minus infinity, then recall that the long term behavior of the function is determined by the ratio of the leading terms.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{4 x^{2}+2 x+1}{2 x^{2}-3 x+5}=\lim _{x \rightarrow \infty} \frac{4 x^{2}}{2 x^{2}}=\lim _{x \rightarrow \infty} 2=2 \\
& \lim _{x \rightarrow \infty} \frac{4 x+2}{2 x^{2}-3 x+5}=\lim _{x \rightarrow \infty} \frac{4 x}{2 x^{2}}=\lim _{x \rightarrow \infty} \frac{2}{x}=0 \\
& \lim _{x \rightarrow \infty} \frac{4 x^{2}+2 x+1}{2 x-3}=\lim _{x \rightarrow \infty} \frac{4 x^{2}}{2 x}=\lim _{x \rightarrow \infty} 2 x=\infty
\end{aligned}
$$

$f(x)=\frac{4 x^{2}+2 x+1}{2 x^{2}-3 x+5}$
$\lim _{x \rightarrow \infty} \frac{4 x^{2}+2 x+1}{2 x^{2}-3 x+5}=\lim _{x \rightarrow \infty} \frac{4 x^{2}}{2 x^{2}}=\lim _{x \rightarrow \infty} 2=2$

$f(x)=\frac{4 x+2}{2 x^{2}-3 x+5}$
$\lim _{x \rightarrow \infty} \frac{4 x+2}{2 x^{2}-3 x+5}=\lim _{x \rightarrow \infty} \frac{4 x}{2 x^{2}}=\lim _{x \rightarrow \infty} \frac{2}{x}=0$

$f(x)=\frac{4 x^{2}+2 x+1}{2 x-3}$
$\lim _{x \rightarrow \infty} \frac{4 x^{2}+2 x+1}{2 x-3}=\lim _{x \rightarrow \infty} \frac{4 x^{2}}{2 x}=\lim _{x \rightarrow \infty} 2 x=\infty$

$$
1506410
$$

