INTRODUCTION TO THE
DEFINITE INTEGRAL
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An interesting question to ask is, “What is the area under
the graph of a given function?”
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One way to approximate this is by drawing rectangles and
using the areas of the rectangles as an approximation of
total area under the curve.

f(X) = X2
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In the drawing below, the get the width of each rectangle
by dividing the length of the interval by the number of

rectangles we want.
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To get the height of each rectangle, we evaluated our
function at the left endpoint of each subinterval. This
method results in a left sum or left riemann sum.
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And here is the result.

Area ~ f(0)-Ax+ f(1)-Ax+ f(2)-Ax+ f(3)- AX

=0-1+1-1+4-1+9.1=14
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Using the right endpoint of each interval gives a different

approximation that we’ll call aright sum.
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And here’s the right sum approximation.

Area ~ f(1)-Ax+ f(2)-Ax+ F(3)-Ax+ f(4)- AX
=1-1+4-1+9-1+16-1=30
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If we use the midpoint of each interval to find the height of
a rectangle, we’ll call that a middle sum.
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And here’s the area estimate from the middle sum.
Area = f(.5)-Ax+ f(1.5) - Ax+ f(2.5)-Ax+ f(3.5)- AX
=5%.1+15%-1+25%-1+3.5°-1=21
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For each type of riemann sum, we can refine our area

estimate by just using more rectangles.

Area ~ 20.6976
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Here is the estimate for the right riemann sum.

Area ~21.9776
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And finally, here is the estimate for the middle riemann sum.

Area ~21.3312

b - | reo=x
Ax=——2 - /

n 12—- /
middle sum - by
n=50 5 i

=%
i




As you can see, with 50 rectangles all of the estimates are
close to 21, and the true area under the curve is 21 1/3.

Area ~21.3312
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The true area under the curve is the result of a limit process
as we let delta x go to zero.

Area ~21.3312
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We call this limit the definite integral of our function as
X goes from ato b.
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In this section, we’ll always estimate the definite integral
using a left riemann sum. Here’'s another example.
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In this section, we’ll always estimate the definite integral
, using aleft riemann sum. Here's another example.

j(x3+1)dXz f(0)-2+1(2)-2+1(4)-2+1(6)-.2+ 1(.8)-.2

=116 | / f(x)= X +1
b-a

0.5




Notice that if our curve is below the x-axis, then the value
of the definite integral is negative.
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Notice that if our curve is below the x-axis, then the value

of the definite integral is negative.

j(—x—l)dXz f(0)-1+ f(1)-1+ f(2)-1=-1-2-3=-6
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Also, if our function is partly above and partly below the
X-axis, then the definite integral is a sum of both positive

and negative areas.
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Now here’s a practical application of the definite integral.
Suppose you run at a constant 4 miles/hour for 2 hours.

Then the distance you run is the same as the area under
the curve below.
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Notice that the units on our answer are the output units
times the input units.
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Furthermore, if our speed is variable, then the total

distance traveled is still equal to the area under the curve.
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