
INTRODUCTION TO THE
DEFINITE INTEGRAL
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An interesting question to ask is, “What is the area under
the graph of a given function?”
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One way to approximate this is by drawing rectangles and
using the areas of the rectangles as an approximation of 
total area under the curve.
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In the drawing below, the get the width of each rectangle
by dividing the length of the interval by the number of
rectangles we want.
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To get the height of each rectangle, we evaluated our 
function at the left endpoint of each subinterval.  This
method results in a left sum or left riemann sum.
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Area (0) (1) (2) (3)
0 1 1 1 4 1 9 1 14
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And here is the result.
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Using the right endpoint of each interval gives a different
approximation that we’ll call a right sum.
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And here’s the right sum approximation.
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Area (1) (2) (3) (4)
1 1 4 1 9 1 16 1 30
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If we use the midpoint of each interval to find the height of
a rectangle, we’ll call that a middle sum.
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And here’s the area estimate from the middle sum.
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2 2 2 2

Area (.5) (1.5) (2.5) (3.5)

.5 1 1.5 1 2.5 1 3.5 1 21
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Area 20.6976≈

For each type of riemann sum, we can refine our area
estimate by just using more rectangles.
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Here is the estimate for the right riemann sum.
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And finally, here is the estimate for the middle riemann sum.
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As you can see, with 50 rectangles all of the estimates are
close to 21, and the true area under the curve is 21 1/3.
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The true area under the curve is the result of a limit process
as we let delta x go to zero.
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We call this limit the definite integral of our function as 
x goes from a to b.
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In this section, we’ll always estimate the definite integral
using a left riemann sum.  Here’s another example.
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In this section, we’ll always estimate the definite integral
using a left riemann sum.  Here’s another example.1
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Notice that if our curve is below the x-axis, then the value
of the definite integral is negative.
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Notice that if our curve is below the x-axis, then the value
of the definite integral is negative.
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Also, if our function is partly above and partly below the 
x-axis, then the definite integral is a sum of both positive
and negative areas.
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Now here’s a practical application of the definite integral.
Suppose you run at a constant 4 miles/hour for 2 hours.
Then the distance you run is the same as the area under 
the curve below.
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Notice that the units on our answer are the output units 
times the input units.
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Furthermore, if our speed is variable, then the total 
distance traveled is still equal to the area under the curve.
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