INTEGRATION BY PARTS

When I was a freshman in college, I took differential and integral calculus.

I loved doing the homework problems!

However, one night there was one problem I just couldn't work.
$x e^{x} d x$

I tried everything, but nothing seemed to work.

$$
x e^{x} d x
$$

Finally, I went to bed.

But as I was falling asleep, I had a vision!

I saw the product formula floating before me.

$$
(u v)^{\prime}=u v^{\prime}+v u^{\prime}
$$

Then I saw the terms rearrange themselves.

$$
\begin{aligned}
& (u v)^{\prime}=u v^{\prime}+v u^{\prime} \\
& u v^{\prime}=(u v)^{\prime}-v u^{\prime}
\end{aligned}
$$

Then I saw integral signs appear.

$$
\begin{gathered}
(u v)^{\prime}=u v^{\prime}+v u^{\prime} \\
u v^{\prime}=(u v)^{\prime}-v u^{\prime} \\
\int u \frac{d v}{d x} d x=\int \frac{d(u v)}{d x} d x-\int v \frac{d u}{d x} d x
\end{gathered}
$$

This last expression can be simplified as follows.

$$
\int u \frac{d v}{d x} d x=\int \frac{d(u v)}{d x} d x-\int v \frac{d u}{d x} d x
$$

$$
\int u d v=u v-\int v d u
$$

So now I knew what I had to do. Identify u and $d v$, and then use the formula on the right to try and simplify my original problem.

$$
\int u d v=u v-\int v d u
$$

$\int x e^{x} d x$

So now I knew what I had to do. Identify u and $d v$, and then use the formula on the right to try and simplify my original problem.

$$
\int u d v=u v-\int v d u
$$

$$
\begin{aligned}
& \int x e^{x} d x \\
& u=x \\
& d v=e^{x} d x \\
& v=e^{x} \\
& d u=d x
\end{aligned}
$$

So now I knew what I had to do. Identify u and $d v$, and then use the formula on the right to try and simplify my original problem.

$$
\begin{aligned}
& \qquad \int u d v=u v-\int v d u \\
& \int x e^{x} d x=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+c \\
& u=x \\
& d v=e^{x} d x \\
& v=e^{x} \\
& d u=d x
\end{aligned}
$$

I was elated! I felt that I had discovered a new and powerful tool for integration. I would be famous!

$$
\begin{aligned}
& \qquad \int u d v=u v-\int v d u \\
& \int x e^{x} d x=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+c \\
& u=x \\
& d v=e^{x} d x \\
& v=e^{x} \\
& d u=d x
\end{aligned}
$$

However, the next day my professor wrote the formula I had discovered on the board and said, "This is what we call integration by parts."

$$
\int u d v=u v-\int v d u
$$

And I'm still not famous.

$$
\int u d v=u v-\int v d u
$$

And I'm still not famous.
... At least not for that formula!

Here's another example.

$$
\int u d v=u v-\int v d u
$$

You want to set $d v$ equal to something you can find an antiderivative of, and then set u equal to whatever is left.

$$
\int u d v=u v-\int v d u
$$

$\int \ln x d x$

You want to set $d v$ equal to something you can find an antiderivative of, and then set u equal to whatever is left.

$$
\int u d v=u v-\int v d u
$$

$\int \ln x d x$

$$
u=\ln x
$$

$$
d v=d x
$$

Next, integrate to find v and differentiate to find $d u$.

$$
\int u d v=u v-\int v d u
$$

$$
\begin{aligned}
& \int \ln x d x \\
& u=\ln x \\
& d v=d x \\
& v=x \\
& d u=\frac{1}{x} d x
\end{aligned}
$$

And now use the formula.

$$
\begin{aligned}
& \qquad \int u d v=u v-\int v d u \\
& \begin{aligned}
& \int \ln x d x=u v-\int v d u=x \ln x-\int x \cdot \frac{1}{x} d x=x \ln x-\int d x \\
&=x \ln x-x+c
\end{aligned} \\
& \begin{array}{l}
u=\ln x \\
d v=d x \\
v=x
\end{array} \\
& d u=\frac{1}{x} d x
\end{aligned}
$$

And now use the formula.

$$
\begin{aligned}
& \int u d v=u v-\int v d u \\
& \begin{aligned}
& \int \ln x d x=u v-\int v d u=x \ln x-\int x \cdot \frac{1}{x} d x=x \ln x-\int d x \\
&=x \ln x-x+c
\end{aligned} \\
& \begin{aligned}
u=\ln x
\end{aligned} \\
& \begin{array}{l}
d v=d x \\
v=x
\end{array} \\
& d u=\frac{1}{x} d x
\end{aligned} \quad l \begin{aligned}
& \int
\end{aligned}
$$

