IMPROPER INTEGRAL EXERCISES - ANSWERS

1. Evaluate $\int_{1}^{\infty} \frac{1}{x} d x$.

$$
\int_{1}^{\infty} \frac{1}{x} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x} d x=\left.\lim _{t \rightarrow \infty} \ln |x|\right|_{1} ^{t}=\lim _{t \rightarrow \infty}(\ln t-\ln 1)=\lim _{t \rightarrow \infty} \ln t=\infty
$$

2. Evaluate $\int_{1}^{\infty} \frac{1}{x^{2}} d x$.

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{2}} d x=\left.\lim _{t \rightarrow \infty} \frac{-1}{x}\right|_{1} ^{t}=\lim _{t \rightarrow \infty}\left(\frac{-1}{t}-\frac{-1}{1}\right)=1
$$

3. Evaluate $\int_{1}^{\infty} \frac{1}{x^{3}} d x$.

$$
\int_{1}^{\infty} \frac{1}{x^{3}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{3}} d x=\left.\lim _{t \rightarrow \infty} \frac{-1}{2 x^{2}}\right|_{1} ^{t}=\lim _{t \rightarrow \infty}\left(\frac{-1}{2 t^{2}}-\frac{-1}{2\left(1^{2}\right)}\right)=\frac{1}{2}
$$

4. Evaluate $\int_{1}^{\infty} \frac{1}{x^{4}} d x$.

$$
\int_{1}^{\infty} \frac{1}{x^{4}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{4}} d x=\left.\lim _{t \rightarrow \infty} \frac{-1}{3 x^{3}}\right|_{1} ^{t}=\lim _{t \rightarrow \infty}\left(\frac{-1}{3 t^{3}}-\frac{-1}{3\left(1^{3}\right)}\right)=\frac{1}{3}
$$

5. Evaluate $\int_{1}^{\infty} \frac{1}{x^{5}} d x$.

$$
\int_{1}^{\infty} \frac{1}{x^{5}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{5}} d x=\left.\lim _{t \rightarrow \infty} \frac{-1}{4 x^{4}}\right|_{1} ^{t}=\lim _{t \rightarrow \infty}\left(\frac{-1}{4 t^{4}}-\frac{-1}{4\left(1^{3}\right)}\right)=\frac{1}{4}
$$

6. Suppose you go to a pharmacy to pick up a prescription and the average waiting time is 5 minutes. It can be shown that the probability that you will have to wait between a and b minutes is given by the integral $\int_{a}^{b} \frac{1}{5} e^{-x / 5} d x$. What is the probability that you will have to wait from 0 to 10 minutes? Round your answer to two decimal places.
$\int_{0}^{10} \frac{1}{5} e^{-x / 5} d x=-\left.e^{-x / 5}\right|_{0} ^{10}=-e^{-10 / 5}+e^{0}=1-e^{-2} \approx 0.86$
7. Suppose you go to a pharmacy to pick up a prescription and the average waiting time is 5 minutes. It can be shown that the probability that you will have to wait between a and b minutes is given by the integral $\int_{a}^{b} \frac{1}{5} e^{-x / 5} d x$. What is the probability that you will have to wait more than 10 minutes? Round your answer to two decimal places.

$$
\int_{10}^{\infty} \frac{1}{5} e^{-x / 5} d x=\left.\lim _{t \rightarrow \infty}\left(-e^{-x / 5}\right)\right|_{10} ^{t}=\lim _{t \rightarrow \infty}\left(-e^{-t / 5}+e^{-2}\right)=\lim _{t \rightarrow \infty}\left(-\frac{1}{e^{t / 5}}+\frac{1}{e^{2}}\right) \approx 0.14
$$

