Finding Derivatives Numerically

Recall how we defined average rate of change over an interval (a, b) for a function $y=f(x)$.

Average Rate of Change $=\frac{f(b)-f(a)}{b-a}$

Also, if we let our second point be variable and denote it by ($x, f(x)$), then we can rewrite our average rate of change formula as follows.

Average Rate of Change $=\frac{f(x)-f(a)}{x-a}$

We now want to transition from average rate of change to instantaneous rate of change. And how do we do this? Simple! We just move our second point ($x, f(x)$) closer and closer to ($a, f(a)$). In other words, we take a limit! And the result will also be the slope of the tangent line at ($a, f(a)$).

Instantaneous Rate of Change $=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$

The instantaneous rate of change at $(a, f(a))$ is also known as the derivative of $f(x)$ at $x=a$, and we have a few different notations for this derivative.

Derivative $=$
Instantaneous Rate of Change $=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
$=f^{\prime}(a)=\left.\frac{d f}{d x}\right|_{x=a}$

So how do we actually evaluate a derivative? Well, one way to do it is numerically. Here is the procedure.

So how do we actually evaluate a derivative? Well, one way to do it is numerically. Here is the procedure.
-Find an algebraic expression for the average rate of change

So how do we actually evaluate a derivative? Well, one way to do it is numerically. Here is the procedure.
-Find an algebraic expression for the average rate of change
-Enter this expression into your calculator

So how do we actually evaluate a derivative? Well, one way to do it is numerically. Here is the procedure.
-Find an algebraic expression for the average rate of change
-Enter this expression into your calculator
-Evaluate the limit numerically as you did before

EXAMPLE:

$$
\begin{aligned}
& f(x)=x^{3}-x \\
& f^{\prime}(1)=?
\end{aligned}
$$

EXAMPLE:

$$
\begin{array}{ll}
\text { XAMPLE: } & \text { Average Rate of Change } \\
f(x)=x^{3}-x & =\frac{f(x)-f(1)}{x-1}=\frac{x^{3}-x-0}{x-1}=\frac{x^{3}-x}{x-1} \\
f^{\prime}(1)=? &
\end{array}
$$

EXAMPLE:

Average Rate of Change

$=\frac{f(x)-f(1)}{x-1}=\frac{x^{3}-x-0}{x-1}=\frac{x^{3}-x}{x-1}$

X	W1	
1.1	2.31	
1.01	2.0201	
1.001	Edy	
1.0ni	2.0	

EXAMPLE:

Average Rate of Change

$=\frac{f(x)-f(1)}{x-1}=\frac{x^{3}-x-0}{x-1}=\frac{x^{3}-x}{x-1}$

$$
f^{\prime}(1)=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{x^{3}-x}{x-1}=2
$$

Now let's look at the graph of both the function and the tangent line.

$$
\begin{aligned}
& f(x)=x^{3}-x \\
& f^{\prime}(1)=2 \\
& P=(1,0) \\
& T=2(x-1)+0=2 x-2
\end{aligned}
$$

Now let's look at the graph of both the function and the tangent line.

$$
\begin{aligned}
& f(x)=x^{3}-x \\
& f^{\prime}(1)=2 \\
& P=(1,0) \\
& T=2(x-1)+0=2 x-2
\end{aligned}
$$

Looks good to me!

EXAMPLE:

$$
\begin{aligned}
& f(x)=\ln x \\
& f^{\prime}(2)=?
\end{aligned}
$$

EXAMPLE:

$$
f(x)=\ln x
$$

Average Rate of Change
$=\frac{f(x)-f(2)}{x-2}=\frac{\ln x-\ln 2}{x-2}$

EXAMPLE:

$$
f(x)=\ln x
$$

Average Rate of Change
$=\frac{f(x)-f(2)}{x-2}=\frac{\ln x-\ln 2}{x-2}$

$$
f^{\prime}(2)=\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2} \frac{\ln x-\ln 2}{x-2}=0.5
$$

Now let's look at the graph and tangent line.

$$
\begin{aligned}
& f(x)=\ln x \\
& f^{\prime}(2)=0.5 \\
& P=(2, \ln 2) \\
& T=0.5(x-2)+\ln 2
\end{aligned}
$$

Now let's look at the graph and tangent line.

$$
\begin{aligned}
& f(x)=\ln x \\
& f^{\prime}(2)=0.5 \\
& P=(2, \ln 2) \\
& T=0.5(x-2)+\ln 2
\end{aligned}
$$

BEAUTIFUL!

