
Finding Derivatives
Numerically



Recall how we defined average rate of change over
an interval (a,b) for a function y=f(x).
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Also, if we let our second point be variable and
denote it by (x,f(x)), then we can rewrite our 
average rate of change formula as follows.

( ) ( )Average Rate of Change f x f a
x a
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We now want to transition from average rate of change
to instantaneous rate of change. And how do we do 
this?  Simple!  We just move our second point (x,f(x))
closer and closer to (a,f(a)). In other words, we take 
a limit!  And the result will also be the slope of the 
tangent line at (a,f(a)).
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The instantaneous rate of change at (a,f(a)) is also 
known as the derivative of f(x) at x=a, and we have
a few different notations for this derivative.
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So how do we actually evaluate a derivative? Well,
one way to do it is numerically.  Here is the procedure.
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So how do we actually evaluate a derivative? Well,
one way to do it is numerically.  Here is the procedure.

•Find an algebraic expression for the average
rate of change

•Enter this expression into your calculator

•Evaluate the limit numerically as you did before
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Now let’s look at the graph of both the function and
the tangent line.
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Now let’s look at the graph of both the function and
the tangent line.

3( )f x x x= −

(1) 2f ′ =

(1,0)P =

2( 1) 0 2 2T x x= − + = −

Looks good to me!
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Now let’s look at the graph and tangent line.
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Now let’s look at the graph and tangent line.
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BEAUTIFUL!


