Finding Derivatives Graphically

Recall that the derivative of a function at a point is also the slope of the tangent line at that point. Thus, we can often figure out things about a derivative just by studying the graph of a function and its tangent lines.

Below is the graph of $f(x)=x^{2}$ with the tangent line drawn in at $x=1$. In this case, we can use the grid along with the formula slope=rise/run to figure out that the slope of the tangent line is 2.

Notice also that our function is increasing when $x>0$, and that the tangent lines for $x>0$ all have positive slope.

Similarly, our function is decreasing when $x<0$, and the tangent lines for $x<0$ all have negative slope.

$$
f(x)=x^{2}
$$

This suggests that derivatives are positive when a function is increasing, and derivatives are negative when a function is decreasing. This will become more important to us later on.

$$
f(x)=x^{2}
$$

Now let's look at $f(x)=x^{3}-3 x$. This graph has a peak at $(-1,2)$ and a valley at (1,-2).

The graph also has a horizontal tangent line at each of these points. Thus, the derivatives are zero at these points.

The graph also has a horizontal tangent line at each of these points. Thus, the derivatives are zero at those points. This will also become important to us later on.

Here's something a little different, the graph of $f(x)=|x|$.

$$
f(x)=|x|
$$

If we look at the secant line through $(0,0)$ and a second point to the left of $(0,0)$, then this secant line has negative slope.

$$
f(x)=|x|
$$

Furthermore, moving our second point closer to the origin doesn't change the behavior of our secant line.

$$
f(x)=|x|
$$

On the other hand, if our second point is to the right of the origin, then the secant line has positive slope.

$$
f(x)=|x|
$$

And again, moving this second point a little closer to the origin doesn't change the behavior of the secant line.

$$
f(x)=|x|
$$

The bottom line is that we can't define either a tangent line or a derivative at $(0,0)$.

$$
f(x)=|x|
$$

This is because secant lines from one direction always have a fixed negative slope while those coming from the other direction have a fixed positive slope. They never approach a common tangent line.

$$
f(x)=|x|
$$

In general, wherever you have a sharp, corner point on a graph, the derivative and tangent line are undefined.

$$
f(x)=|x|
$$

Now here's another interesting fact. Suppose we examine the graph of $f(x)=x^{2}$ along with its tangent line at the origin.

$$
f(x)=x^{2}
$$

Watch what happens as we zoom in at the origin.

And again

And again

$$
\begin{aligned}
& \text { (0.05-2 } \\
& f(x)=x^{2}
\end{aligned}
$$

The more we zoom in, the flatter that tiny piece of the curve becomes, and the more it resembles its own tangent line at that point.

$$
f(x)=x^{2}
$$

We call this property local linearity, and a tangent line exists at a point only if the graph is locally linear at that point.

Notice that when you have a sharp point on a graph, the graph is not locally linear at that point, and hence, doesn't have a tangent line there.

$$
f(x)=|x|
$$

And as a final note, there is a theorem in calculus that says that if a function has a derivative at a point, then it must be continuous at that point.

$$
f(x)= \begin{cases}x+1 & x \leq 1 \\ -x & x>1\end{cases}
$$

Hence, the function below has neither a tangent line nor a derivative at $x=1$, since it is not continuous at $x=1$.

$$
f(x)= \begin{cases}x+1 & x \leq 1 \\ -x & x>1\end{cases}
$$

The bottom line is that derivatives fail to exist at both discontinuities and at sharp, corner points.

$$
f(x)=|x|
$$

$$
f(x)= \begin{cases}x+1 & x \leq 1 \\ -x & x>1\end{cases}
$$

