
Finding Derivatives Algebraically
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We’ll now focus on finding derivatives by evaluating
a limit algebraically.  If we are trying to find the 
derivative at a single point a, then the first formula
below is the easiest one to use.
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EXAMPLE: Let f(x)=x2 and let a=1.
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EXAMPLE: Let f(x)=x2 and let a=1.
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EXAMPLE: Let f(x)=x2 and let a=1.

Thus, the slope of the tangent line is 2 when a=1,
and this is also the instantaneous rate of change
at this point.
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EXAMPLE: Let f(x)=x3-x and let a=1.
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EXAMPLE: Let f(x)=x3-x and let a=1.

Here we had a different function, but by coincidence
the derivative at 1 still came out equal to 2.
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If instead of evaluating the derivative at a specific point,
we want to find a general formula for the derivative, 
then the second formula is the best to use.



EXAMPLE: Let f(x)=x2 and find f’(x).
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EXAMPLE: Let f(x)=x2 and find f’(x).
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EXAMPLE: Let f(x)=x2 and find f’(x).

The advantage now is that we can use this formula to
quickly find the derivative/instantaneous rate of change/
slope of tangent line at any point.
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EXAMPLE: Suppose f(x)=x2 represents the number
of miles you have walked after x hours. Find your
instantaneous velocity after 0, .5, 1.5, and 2 hours.
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EXAMPLE: Suppose f(x)=x2 represents the number
of miles you have walked after x hours. Find your
instantaneous velocity after 0, .5, 1.5, and 2 hours.
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EXAMPLE: Let f(x)=x3 and find f’(x).
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EXAMPLE: Let f(x)=x3 and find f’(x).
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EXAMPLE: Let f(x)=x3 and find f’(x).

Again, we now have a formula that we can use to
quickly find the derivative at several points.
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EXAMPLE: Let f(x)=x3 and find f’(x).

Again, we now have a formula that we can use to
quickly find the derivative at several points.
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