Finding Derivatives Algebraically

$$
\begin{aligned}
& f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

We'll now focus on finding derivatives by evaluating a limit algebraically. If we are trying to find the derivative at a single point a, then the first formula below is the easiest one to use.

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

EXAMPLE: Let $f(x)=x^{2}$ and let $a=1$.

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

EXAMPLE: Let $f(x)=x^{2}$ and let $a=1$.

$$
\begin{aligned}
& f^{\prime}(1)=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} \frac{(x+1)(x-1)}{(x-1)} \\
& =\lim _{x \rightarrow 1}(x+1)=1+1=2
\end{aligned}
$$

EXAMPLE: Let $f(x)=x^{2}$ and let $a=1$.
Thus, the slope of the tangent line is $\mathbf{2}$ when $a=1$, and this is also the instantaneous rate of change at this point.

$$
\begin{aligned}
& f^{\prime}(1)=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} \frac{(x+1)(x-1)}{(x-1)} \\
& =\lim _{x \rightarrow 1}(x+1)=1+1=2
\end{aligned}
$$

EXAMPLE: Let $f(x)=x^{3}-x$ and let $a=1$.

$$
\begin{aligned}
& f^{\prime}(1)=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{\left(x^{3}-x\right)-0}{x-1}=\lim _{x \rightarrow 1} \frac{x\left(x^{2}-1\right)}{(x-1)} \\
& =\lim _{x \rightarrow 1} \frac{x(x+1)(x-1)}{(x-1)}=\lim _{x \rightarrow 1} x(x+1)=1 \cdot(1+1)=2
\end{aligned}
$$

EXAMPLE: Let $f(x)=x^{3}-x$ and let $a=1$.

Here we had a different function, but by coincidence the derivative at 1 still came out equal to 2 .

$$
\begin{aligned}
& f^{\prime}(1)=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{\left(x^{3}-x\right)-0}{x-1}=\lim _{x \rightarrow 1} \frac{x\left(x^{2}-1\right)}{(x-1)} \\
& =\lim _{x \rightarrow 1} \frac{x(x+1)(x-1)}{(x-1)}=\lim _{x \rightarrow 1} x(x+1)=1 \cdot(1+1)=2
\end{aligned}
$$

If instead of evaluating the derivative at a specific point, we want to find a general formula for the derivative, then the second formula is the best to use.

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

EXAMPLE: Let $f(x)=x^{2}$ and find $f^{\prime}(x)$.

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

EXAMPLE: Let $f(x)=x^{2}$ and find $f^{\prime}(x)$.

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 h x+h^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{2 h x+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h}=\lim _{h \rightarrow 0}(2 x+h)=2 x+0=2 x
\end{aligned}
$$

EXAMPLE: Let $f(x)=x^{2}$ and find $f^{\prime}(x)$.

The advantage now is that we can use this formula to quickly find the derivative/instantaneous rate of change/ slope of tangent line at any point.

$$
\begin{aligned}
& f^{\prime}(x)=2 x \\
& f^{\prime}(1)=2 \\
& f^{\prime}(2)=4 \\
& f^{\prime}(3)=6
\end{aligned}
$$

EXAMPLE: Suppose $f(x)=x^{2}$ represents the number of miles you have walked after x hours. Find your instantaneous velocity after $0, .5,1.5$, and 2 hours.

$$
f^{\prime}(x)=2 x
$$

EXAMPLE: Suppose $f(x)=x^{2}$ represents the number of miles you have walked after x hours. Find your instantaneous velocity after $0, .5,1.5$, and 2 hours.

$$
f^{\prime}(x)=2 x
$$

$f^{\prime}(0)=0$ miles/hour
$f^{\prime}(.5)=1 \mathrm{miles} /$ hour
$f^{\prime}(1.5)=3 \mathrm{miles} /$ hour
$f^{\prime}(2)=4$ miles/hour

EXAMPLE: Let $f(x)=x^{3}$ and find $f^{\prime}(x)$.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

EXAMPLE: Let $f(x)=x^{3}$ and find $f^{\prime}(x)$.

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}{h}=\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(3 x^{2}+3 x h+h^{2}\right)}{h}=\lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}\right) \\
& =3 x^{2}+3 x \cdot 0+0^{2}=3 x^{2}
\end{aligned}
$$

EXAMPLE: Let $f(x)=x^{3}$ and find $f^{\prime}(x)$.

Again, we now have a formula that we can use to quickly find the derivative at several points.

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2} \\
& f^{\prime}(1)=3 \cdot 1^{2}=3 \\
& f^{\prime}(2)=3 \cdot 2^{2}=12 \\
& f^{\prime}(3)=3 \cdot 3^{2}=27
\end{aligned}
$$

EXAMPLE: Let $f(x)=x^{3}$ and find $f^{\prime}(x)$.

Again, we now have a formula that we can use to quickly find the derivative at several points.

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2} \\
& f^{\prime}(1)=3 \cdot 1^{2}=3 \\
& f^{\prime}(2)=3 \cdot 2^{2}=12 \\
& f^{\prime}(3)=3 \cdot 3^{2}=27
\end{aligned}
$$

