## DERIVATIVE FORMULAS 1



THEOREM: If $f(x)=c$ is a constant function, then $f^{\prime}(x)=0$.

PROOF: Suppose $f(x)=c$ is a constant function. Then
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{c-c}{h}=\lim _{h \rightarrow 0} \frac{0}{h}=\lim _{h \rightarrow 0} 0=0$.

THEOREM: If $f(x)=x$, then $f^{\prime}(x)=1$.

PROOF: Suppose $f(x)=x$. Then
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{x+h-x}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=\lim _{h \rightarrow 0} 1=1$.

THEOREM: If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$.

PROOF: Suppose $f(x)=x^{2}$. Then

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{x^{2}+2 h x+h^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h x+h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h}=\lim _{h \rightarrow 0}(2 x+h)=2 x .
\end{aligned}
$$

THEOREM: If $f(x)=x^{3}$, then $f^{\prime}(x)=3 x^{2}$.

PROOF: Suppose $f(x)=x^{3}$. Then

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{3}+3 h x^{2}+3 h^{2} x+h^{3}-x^{3}}{h}=\lim _{h \rightarrow 0} \frac{3 h x^{2}+3 h^{2} x+h^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(3 x^{2}+3 h x+h^{2}\right)}{h}=\lim _{h \rightarrow 0}\left(3 x^{2}+3 h x+h^{2}\right)=3 x^{2} .
\end{aligned}
$$

THEOREM: If $f(x)=x^{n}$ where $n$ is any real number, then $f^{\prime}(x)=n x^{n-1}$.

ARGUMENT: This is not a formal proof. We are simply going to recognize the pattern. In particular, if we write $1=x^{0}$, then we've seen the following results:
$\frac{d\left(x^{0}\right)}{d x}=\frac{d(1)}{d x}=0=0 \cdot x^{-1}$
$\frac{d\left(x^{1}\right)}{d x}=1=1 \cdot x^{0}$
$\frac{d x^{2}}{d x}=2 x=2 x^{1}$
$\frac{d x^{3}}{d x}=3 x^{2}$
At this point, we'll take it on faith that the pattern holds for all real numbers $n$.

THEOREM: If $f(x)=c \cdot g(x)$ where $c$ is a constant, then $f^{\prime}(x)=c \cdot g^{\prime}(x)$.

PROOF: Suppose $f(x)=c \cdot g(x)$ where $c$ is a constant. Then

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{c \cdot g(x+h)-c \cdot g(x)}{h} \\
& =c \cdot \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=c \cdot g^{\prime}(x) .
\end{aligned}
$$

THEOREM: If $y=(f+g)(x)=f(x)+g(x)$,
then $\frac{d y}{d x}=f^{\prime}(x)+g^{\prime}(x)$.

PROOF: Suppose $y=(f+g)(x)=f(x)+g(x)$. Then
$\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{(f+g)(x+h)-(f+g)(x)}{h}$
$=\lim _{h \rightarrow 0} \frac{f(x+h)+g(x+h)-f(x)-g(x)}{h}$
$=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\frac{g(x+h)-g(x)}{h}=f^{\prime}(x)+g^{\prime}(x)$.

THEOREM: If $y=(f+g)(x)=f(x)+g(x)$,
then $\frac{d y}{d x}=f^{\prime}(x)+g^{\prime}(x)$.

PROOF: Suppose $y=(f+g)(x)=f(x)+g(x)$. Then
$\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{(f+g)(x+h)-(f+g)(x)}{h}$
$=\lim _{h \rightarrow 0} \frac{f(x+h)+g(x+h)-f(x)-g(x)}{h}$
$=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\frac{g(x+h)-g(x)}{h}=f^{\prime}(x)+g^{\prime}(x)$.
COROLLARY: If $y=(f-g)(x)=f(x)-g(x)$,
then $\frac{d y}{d x}=f^{\prime}(x)-g^{\prime}(x)$.

## SUMMARY 1

$$
\text { 1. } \frac{d(c)}{d x}=0
$$

2. $\frac{d x^{n}}{d x}=n x^{n-1}$
3. $\frac{d(c f(x))}{d x}=c \frac{d f}{d x}$
4. $\frac{d(f \pm g)}{d x}=\frac{d f}{d x} \pm \frac{d g}{d x}$

EXAMPLES:

$$
y=2
$$

## EXAMPLES:

$$
\begin{aligned}
& y=2 \\
& \frac{d y}{d x}=0
\end{aligned}
$$

## EXAMPLES:

$$
y=x=x^{1}
$$

EXAMPLES:

$$
\begin{aligned}
& y=x=x^{1} \\
& \frac{d y}{d x}=1 \cdot x^{0}=1 \cdot 1=1
\end{aligned}
$$

## EXAMPLES:

$$
y=x^{10}
$$

## EXAMPLES:

$$
\begin{aligned}
& y=x^{10} \\
& \frac{d y}{d x}=10 x^{9}
\end{aligned}
$$

## EXAMPLES:

$$
y=5 x^{3}
$$

EXAMPLES:

$$
\begin{aligned}
& y=5 x^{3} \\
& \frac{d y}{d x}=5 \cdot 3 x^{2}=15 x^{2}
\end{aligned}
$$

## EXAMPLES:

$$
y=x^{2}-3 x+1
$$

## EXAMPLES:

$$
\begin{aligned}
& y=x^{2}-3 x+1 \\
& \frac{d y}{d x}=2 x-3
\end{aligned}
$$

EXAMPLES:

$$
y=4 x^{2}+8 x+5
$$

## EXAMPLES:

$$
\begin{aligned}
& y=4 x^{2}+8 x+5 \\
& \frac{d y}{d x}=8 x+8
\end{aligned}
$$

## EXAMPLES:

$$
y=\frac{1}{x^{2}}=x^{-2}
$$

EXAMPLES:

$$
\begin{aligned}
& y=\frac{1}{x^{2}}=x^{-2} \\
& \frac{d y}{d x}=-2 x^{-3}=-\frac{2}{x^{3}}
\end{aligned}
$$

## EXAMPLES:

$$
y=\sqrt{x}=x^{1 / 2}
$$

## EXAMPLES:

$$
\begin{aligned}
& y=\sqrt{x}=x^{1 / 2} \\
& \frac{d y}{d x}=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 x^{1 / 2}}=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

## EXAMPLES:

$$
y=x^{\pi}
$$

## EXAMPLES:

$$
\begin{aligned}
& y=x^{\pi} \\
& \frac{d y}{d x}=\pi x^{\pi-1}
\end{aligned}
$$

