CONTINUITY

Typically, we think of a graph as being continuous at all real numbers if its graph represents a curve that can be drawn without having to lift one's pencil off the paper.

Continuous at all real numbers

Similarly, a graph is discontinuous at a real number if its graph has a break at that point.

Discontinuous at $x=0$

We can define continuity at a real number a using the concept of a limit.

DEFINITION: A function $y=f(x)$ is continuous at a real number a
if $\lim _{x \rightarrow a} f(x)=f(a)$.

We also can make this definition a little easier to grasp by breaking up the condition into three parts.

DEFINITION: A function $y=f(x)$ is continuous at a real number a
if:

1. $f(a)$ exists
2. $\lim _{x \rightarrow a} f(x)$ exists
3. $\lim _{x \rightarrow a} f(x)=f(a)$

These criteria describe three ways in which a function can fail to be continuous at a real number.

DEFINITION: A function $y=f(x)$ is continuous at a real number a if:

1. $f(a)$ exists
2. $\lim _{x \rightarrow a} f(x)$ exists
3. $\lim _{x \rightarrow a} f(x)=f(a)$

Let's now look at a few examples.

DEFINITION: A function $y=f(x)$ is continuous at a real number a if:

1. $f(a)$ exists
2. $\lim _{x \rightarrow a} f(x)$ exists
3. $\lim _{x \rightarrow a} f(x)=f(a)$
4. $f(x)=\frac{1}{x^{2}-4}$

The function is discontinuous at $x=-2$ and $x=2$ since the function is undefined at these values.
2. $f(x)= \begin{cases}x-1 & \text { if } x<0 \\ -x+1 & \text { if } x \geq 0\end{cases}$

The function is discontinuous at $x=0$ since $\lim _{x \rightarrow 0} f(x)$ does not exist.
3. $f(x)= \begin{cases}x & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}$

The function is discontinuous at $x=0$ since $\lim _{x \rightarrow 0} f(x) \neq f(0)$.

To find real number values at which a function is not continuous:

1. Examine both the function and its graph.
2. Look for values at which $f(x)$ is not defined.
3. Look for values at which $\lim _{x \rightarrow a} f(x)$ is not defined.
4. Look for values at which $\lim _{x \rightarrow a} f(x) \neq f(a)$.
