## CONCAVITY



A curve that looks like it will "hold water" is called concave up.


A curve that looks like it will "spill water," is called concave down.


Notice that if we add some tangent lines to our concave up graph, then the slopes of the tangent lines are increasing.


Notice that if we add some tangent lines to our concave up graph, then the slopes of the tangent lines are increasing.


In other words, $f^{\prime}(x)$ is increasing
which means that its derivative is positive.

Similarly, if we add tangent lines to our concave down graph, then the slopes of the tangent lines are decreasing.


Similarly, if we add tangent lines to our concave down graph, then the slopes of the tangent lines are decreasing.


In other words, $f^{\prime}(x)$ is decreasing
which means that its derivative is negative.

This leads to the following definitions.

This leads to the following definitions.

A function is concave up at a point $x$ if $f^{\prime \prime}(x)>0$.

This leads to the following definitions.

A function is concave up at a point $x$ if $f^{\prime \prime}(x)>0$.

A function is concave up on an interval if $f^{\prime \prime}(x)>0$ for each $x$ in that interval.

## This leads to the following definitions.

A function is concave up at a point $x$ if $f^{\prime \prime}(x)>0$.

A function is concave up on an interval if $f^{\prime \prime}(x)>0$ for each $x$ in that interval.

A function is concave down at a point $x$ if $f^{\prime \prime}(x)<0$.

## This leads to the following definitions.

A function is concave up at a point $x$ if $f^{\prime \prime}(x)>0$.

A function is concave up on an interval if $f^{\prime \prime}(x)>0$ for each $x$ in that interval.

A function is concave down at a point $x$ if $f^{\prime \prime}(x)<0$.

A function is concave down on an interval if $f^{\prime \prime}(x)<0$ for each $x$ in that interval.

Here's an example.
$f(x)=x^{3}-3 x$


Here's an example.

$$
\begin{aligned}
& f(x)=x^{3}-3 x \\
& f^{\prime}(x)=3 x^{2}-3 \\
& f^{\prime \prime}(x)=6 x
\end{aligned}
$$



Here's an example.
$f(x)=x^{3}-3 x$
$f^{\prime}(x)=3 x^{2}-3$
$f^{\prime \prime}(x)=6 x$

$f(x)$ is concave up if $x>0$

Here's an example.
$f(x)=x^{3}-3 x$
$f^{\prime}(x)=3 x^{2}-3$
$f^{\prime \prime}(x)=6 x$

$f(x)$ is concave up if $x>0$
$f(x)$ is concave down if $x<0$

Here's an example.
$f(x)=x^{3}-3 x$
$f^{\prime}(x)=3 x^{2}-3$
$f^{\prime \prime}(x)=6 x$

$f(x)$ is concave up if $x>0$
$f(x)$ is concave down if $x<0$
The point $(0,0)$ is called an inflection point since the concavity changes at this point.

