Average Rate of Change

Suppose you go on a walk, and after two hours you have gone four miles. What is your average velocity?

Suppose you go on a walk, and after two hours you have gone four miles. What is your average velocity?

$$
\text { average velocity }=\frac{4 \text { miles }}{2 \text { hours }}=2 \frac{\text { miles }}{\text { hour }}
$$

Of course, it's quite likely that we weren't walking at 2 miles/hour at every single moment. This is just an average rate over a specific time interval.

$$
\text { average velocity }=\frac{4 \text { miles }}{2 \text { hours }}=2 \frac{\text { miles }}{\text { hour }}
$$

In particular, suppose our distance traveled at time x is given by the function $f(x)=x^{2}$ for x ranging from 0 to 2 .

$$
\text { average velocity }=\frac{4 \text { miles }}{2 \text { hours }}=2 \frac{\text { miles }}{\text { hour }}
$$

Then our average velocity is just the slope of the secant line that connects our starting point with our stopping point.

$$
\text { slope }=\frac{4-0}{2-0}=\frac{4}{2}=2
$$

In other words, the average rate of change from one point on a curve to another is the same as the slope of the line connecting the two points.

average rate of change
$=$ slope $=\frac{4-0}{2-0}=\frac{4}{2}=2$

EXAMPLE: If $f(x)=x^{2}$, what is the average rate of change from $x=1$ to $x=1.5$?

average rate of change
$=$ slope $=\frac{2.25-1}{1.5-1}=\frac{1.25}{0.5}=2.5$

Now suppose that the Dow Jones Industrial Average is at 13,100 on day 1 and 12,865 on day 5 . What is the average rate of change?

Now suppose that the Dow Jones Industrial Average is at 13,100 on day 1 and 12,865 on day 5 . What is the average rate of change?
$(1,13,100)$
$(5,12,865)$
average rate of change
$=$ slope $=\frac{12865-13100}{5-1}=\frac{-235}{4}=-58.75 \frac{\text { points }}{\text { day }}$

Finally, suppose we have a point on function with coordinates ($x, f(x)$) and suppose also that we add an increment h to x to get a second point ($x+h, f(x+h)$).

Then the formula for the average rate of change is as follows.
average rate of change
$=$ slope $=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h}$

This expression is also known as the difference quotient, and it is another way to express the average rate of change.
average rate of change
$=$ slope $=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h}$

EXAMPLE: If $f(x)=x^{2}$ and if we start at $a=1$ followed by an increment of $h=2$, then what is the average rate of change?
average rate of change
$=$ slope $=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h}$

EXAMPLE: If $f(x)=x^{2}$ and if we start at $a=1$ followed by an increment of $h=2$, then what is the average rate of change?
average rate of change

$$
\begin{aligned}
& =\text { slope }=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& =\frac{f(1+2)-f(1)}{2}=\frac{f(3)-f(1)}{2}=\frac{3^{2}-1^{2}}{2}=\frac{9-1}{2}=\frac{8}{2}=4
\end{aligned}
$$

