THE AREA BETWEEN TWO CURVES

Suppose we want to find the area between the graphs of $y=x^{2}+2$ and $y=x+1$ on the interval from 0 to 2.

That's easy to do. We just first find the area between $y=x^{2}+2$ and the x-axis, and then we subtract off the area between $y=x+1$ and the $x=$ axis.

Also, we can express this area as the difference between two integrals.

$$
\int_{0}^{2}\left(x^{2}+2\right) d x-\int_{0}^{2}(x+1) d x
$$

And finally, we can write this as a single integral that gives us the area between the two curves.

$$
\begin{aligned}
& \text { Area }=\int_{0}^{2}\left(x^{2}+2\right) d x-\int_{0}^{2}(x+1) d x \\
& =\int_{0}^{2}\left(x^{2}+2\right)-(x+1) d x \\
& =\int_{0}^{2}\left(x^{2}-x+1\right) d x \\
& =\frac{x^{3}}{3}-\frac{x^{2}}{2}+\left.x\right|_{0} ^{2}=\frac{8}{3}
\end{aligned}
$$

Now let's suppose that the region we want to find the area of is not entirely above the x-axis.

If our region is not entirely above the x-axis, then we can't interpret the integral as representing area as we did before.

However, by adding an appropriate constant to both functions, we can create a vertical shift that places the region entirely above the x-axis.

And now we can proceed as before. We can find the area between the two curves by subtracting the bottom function from the top.

$$
\text { Area }=\int^{1}(f(x)+2)-(g(x)+2) d x
$$

However, when we do this the constant we added on simply subtracts off.

$$
\begin{aligned}
& \text { Area }=\int_{-1}^{1}(f(x)+2)-(g(x)+2) d x \\
& =\int_{-1}^{1}(f(x)-g(x)) d x \\
& =\int_{-1}^{1}\left(-x^{2}+1\right)-\left(x^{2}-1\right) d x \\
& =\int_{-1}^{1}\left(-2 x^{2}+2\right) d x=\frac{8}{3}
\end{aligned}
$$

The bottom line is that we don't need to worry about whether the region is below the x-axis or not. To find the area we just subtract the bottom function from the top.

$$
\text { Area between curves }=\int_{a}^{b}(f(x)-g(x)) d x
$$

Now let's look at this example. The problem is that $g(x)$ is the top function on the interval from -1 to 0 , but it's the bottom function on the interval from 0 to 1.

So what do we do? Simple! We just do two separate integrals.

$$
\begin{aligned}
& \text { Area }=\int_{-1}^{0}(g(x)-f(x)) d x+\int_{0}^{1}(f(x)-g(x)) d x \\
& =\int_{-1}^{0}\left(\left(x^{3}-x+1\right)-1\right) d x \\
& +\int_{0}^{1}\left(1-\left(x^{3}-x+1\right)\right) d x \\
& =\frac{1}{4}+\frac{1}{4}=\frac{1}{2}
\end{aligned}
$$

Now let's suppose that you have a business that over a 5 year period generates revenue at a rate of $f(x)=2 x+3$ dollars per year and costs at a rate of $g(x)=x+1$ dollars per year. What is your profit over this five year period?

Revenue $=\int_{0}^{5}(2 x+3) d x, \quad$ Cost $=\int_{0}^{5}(x+1) d x$
Profit $=$ Revenue - Cost $=\int_{0}^{5}(2 x+3) d x-\int_{0}^{5}(x+1) d x$
$=\int_{0}^{5}(2 x+3)-(x+1) d x$
$=\int_{0}^{5}(x+2) d x=\frac{x^{2}}{2}+\left.2 x\right|_{0} ^{5}$
$=\$ 22.50$

