Applications of Maxima and Minima

x = lengthy = widthArea = xy

x = length y = widthArea = xy

 $2x + 2y = 100 \Rightarrow y = 50 - x$

x = length y = widthArea = xy $2x + 2y = 100 \Rightarrow y = 50 - x$ $A(x) = x(50 - x) = 50x - x^{2}$

x = length y = widthArea = xy $2x + 2y = 100 \Rightarrow y = 50 - x$ $A(x) = x(50 - x) = 50x - x^{2}$ Critical A'(x) = 50 - 2x $50 - 2x = 0 \Rightarrow x = 25$

x = lengthy = widthArea = xy $2x + 2y = 100 \Rightarrow y = 50 - x$ $A(x) = x(50 - x) = 50x - x^2$ Critical A'(x) = 50 - 2x Point $50 - 2x = 0 \Longrightarrow x = 25$ A''(x) = -2 $A''(25) = -2 < 0 \Rightarrow$ maximum

x = lengthy = widthArea = xy $2x + 2y = 100 \Rightarrow y = 50 - x$ $A(x) = x(50 - x) = 50x - x^2$ Critical Point A'(x) = 50 - 2x $50-2x=0 \Rightarrow x=25$ A''(x) = -2 $A''(25) = -2 < 0 \Rightarrow$ maximum

Area is maximized when both length and width are 25 feet. Maximum area is 625 feet².

demand = 200,000 - 10,000 p

demand = 200,000 - 10,000 p

revenue = demand × price = (200,000-10,000p)p

 $= R(p) = 200,000 \, p - 10,000 \, p^2$

demand = 200,000 - 10,000 p

revenue = demand × price = (200,000-10,000p)p

 $= R(p) = 200,000 p - 10,000 p^{2}$

R'(p) = 200,000 - 20,000 p

demand = 200,000 - 10,000 p

revenue = demand × price = (200,000-10,000p)p

```
= R(p) = 200,000 p - 10,000 p^{2}
```

```
R'(p) = 200,000 - 20,000 p
```

 $R'(p) = 0 \Longrightarrow 200,000 - 20,000 p = 0$ $\implies p = 10 \longleftarrow \frac{\text{Critical}}{\text{Point}}$

demand = 200,000 - 10,000 p

revenue = demand × price = (200,000-10,000p)p

 $= R(p) = 200,000 p - 10,000 p^{2}$

R'(p) = 200,000 - 20,000 p

 $R'(p) = 0 \Longrightarrow 200,000 - 20,000 p = 0$ $\implies p = 10 \longleftarrow \text{Critical}_{\text{Point}}$

 $R''(p) = -20,000 \Rightarrow R''(10) = -20,000$ \Rightarrow maximum revenue when p = \$10.

demand = 200,000 - 10,000 p

revenue = demand × price = (200,000 - 10,000 p) p= $R(p) = 200,000 p - 10,000 p^2$ R'(p) = 200,000 - 20,000 p $R'(p) = 0 \Rightarrow 200,000 - 20,000 p = 0$ $\Rightarrow p = 10 \leftarrow Critical$ Point $P''(r) = 20,000 \Rightarrow P''(10) = 20,000$

 $R''(p) = -20,000 \Rightarrow R''(10) = -20,000$ \Rightarrow maximum revenue when p = \$10.

