Applications of Maxima and Minima

Suppose you have 100 ft of fencing. What is the largest rectangular area you can enclose?

Suppose you have 100 ft of fencing. What is the largest rectangular area you can enclose?
$x=$ length
$y=$ width
Area $=x y$

Suppose you have 100 ft of fencing. What is the largest rectangular area you can enclose?
$x=$ length
$y=$ width
Area $=x y$
$2 x+2 y=100 \Rightarrow y=50-x$

Suppose you have 100 ft of fencing. What is the largest rectangular area you can enclose?
$x=$ length
$y=$ width
Area $=x y$
$2 x+2 y=100 \Rightarrow y=50-x$
$A(x)=x(50-x)=50 x-x^{2}$

Suppose you have 100 ft of fencing. What is the largest rectangular area you can enclose?
$x=$ length
$y=$ width
Area $=x y$
$2 x+2 y=100 \Rightarrow y=50-x$

$A(x)=x(50-x)=50 x-x^{2}$
$A^{\prime}(x)=50-2 x$
$50-2 x=0 \Rightarrow x=25$

Suppose you have 100 ft of fencing. What is the largest rectangular area you can enclose?
$x=$ length
$y=$ width
Area $=x y$
$2 x+2 y=100 \Rightarrow y=50-x$

$A(x)=x(50-x)=50 x-x^{2}$
Critical
$A^{\prime}(x)=50-2 x$
$50-2 x=0 \Rightarrow x=25$
$A^{\prime \prime}(x)=-2$
$A^{\prime \prime}(25)=-2<0 \Rightarrow$ maximum

Suppose you have 100 ft of fencing. What is the largest rectangular area you can enclose?

$x=$ length
$y=$ width
Area $=x y$
$2 x+2 y=100 \Rightarrow y=50-x$
$A(x)=x(50-x)=50 x-x^{2}$
Critical
Point
$A^{\prime}(x)=50-2 x$
$50-2 x=0 \Rightarrow x=25$
$A^{\prime \prime}(x)=-2$
$A^{\prime \prime}(25)=-2<0 \Rightarrow$ maximum

Area is maximized when both length and width are 25 feet. Maximum area is 625 feet 2.

Now suppose you have 100 ft of fencing, but one side of the rectangular area is the side of a building. That means you only have to fence in three sides. In this situation, what is the largest rectangular area you can enclose?

Now suppose you have 100 ft of fencing, but one side of the rectangular area is the side of a building. That means you only have to fence in three sides. In this situation, what is the largest rectangular area you can enclose?

$$
\begin{aligned}
& x=\text { length } \\
& y=\text { width } \\
& \text { Area }=x y
\end{aligned}
$$

Now suppose you have 100 ft of fencing, but one side of the rectangular area is the side of a building. That means you only have to fence in three sides. In this situation, what is the largest rectangular area you can enclose?
$x=$ length
$y=$ width
Area $=x y$
$x+2 y=100 \Rightarrow y=50-x / 2$

X

Now suppose you have 100 ft of fencing, but one side of the rectangular area is the side of a building. That means you only have to fence in three sides. In this situation, what is the largest rectangular area you can enclose?

$$
\begin{aligned}
& x=\text { length } \\
& y=\text { width } \\
& \text { Area }=x y \\
& x+2 y=100 \Rightarrow y=50-x / 2 \\
& A(x)=x(50-x / 2)=50 x-x^{2} / 2
\end{aligned}
$$

X

Now suppose you have 100 ft of fencing, but one side of the rectangular area is the side of a building. That means you only have to fence in three sides. In this situation, what is the largest rectangular area you can enclose?

$$
\begin{aligned}
& x=\text { length } \\
& y=\text { width } \\
& \text { Area }=x y \\
& x+2 y=100 \Rightarrow y=50-x / 2 \\
& A(x)=x(50-x / 2)=50 x-x^{2} / 2 \\
& A^{\prime}(x)=50-x \quad \text { Critical } \\
& 50-x=0 \Rightarrow x=50
\end{aligned}
$$

Now suppose you have 100 ft of fencing, but one side of the rectangular area is the side of a building. That means you only have to fence in three sides. In this situation, what is the largest rectangular area you can enclose?

$$
\begin{aligned}
& x=\text { length } \\
& y=\text { width } \\
& \text { Area }=x y \\
& x+2 y=100 \Rightarrow y=50-x / 2 \\
& A(x)=x(50-x / 2)=50 x-x^{2} / 2 \\
& A^{\prime}(x)=50-x \quad \text { Critical } \\
& 50-x=0 \Rightarrow x=50
\end{aligned}
$$

$A^{\prime \prime}(x)=-1$
$A^{\prime \prime}(50)=-1<0 \Rightarrow$ maximum

Now suppose you have 100 ft of fencing, but one side of the rectangular area is the side of a building. That means you only have to fence in three sides. In this situation, what is the largest rectangular area you can enclose?

$$
\begin{aligned}
& x=\text { length } \\
& y=\text { width } \\
& \text { Area }=x y \\
& x+2 y=100 \Rightarrow y=50-x / 2 \\
& A(x)=x(50-x / 2)=50 x-x^{2} / 2
\end{aligned}
$$

$$
A^{\prime}(x)=50-x
$$

Critical
$50-x=0 \Rightarrow x=50 \quad$ Area is maximized when $x=50$ feet
Point and $y=25$ feet. Maximum area is 1250 feet 2.

Hercules Films is deciding on the price of the video release of its film Son of Frankenstein. Its marketing people estimate that at a price of p dollars, it can sell a total of $q=200,000-10,000 p$ copies. What price will bring in the greatest revenue?

Hercules Films is deciding on the price of the video release of its film Son of Frankenstein. Its marketing people estimate that at a price of p dollars, it can sell a total of $q=200,000-10,000 p$ copies. What price will bring in the greatest revenue?
demand $=200,000-10,000 p$

Hercules Films is deciding on the price of the video release of its film Son of Frankenstein. Its marketing people estimate that at a price of p dollars, it can sell a total of $q=200,000-10,000 p$ copies. What price will bring in the greatest revenue?

```
demand =200,000-10,000p
revenue = demand }\times\mathrm{ price }=(200,000-10,000p)
=R(p)=200,000p-10,000 p
```

Hercules Films is deciding on the price of the video release of its film Son of Frankenstein. Its marketing people estimate that at a price of p dollars, it can sell a total of $q=200,000-10,000 p$ copies. What price will bring in the greatest revenue?

$$
\begin{aligned}
& \text { demand }=200,000-10,000 p \\
& \text { revenue }=\text { demand } \times \text { price }=(200,000-10,000 p) p \\
& =R(p)=200,000 p-10,000 p^{2} \\
& R^{\prime}(p)=200,000-20,000 p
\end{aligned}
$$

Hercules Films is deciding on the price of the video release of its film Son of Frankenstein. Its marketing people estimate that at a price of p dollars, it can sell a total of $q=200,000-10,000 p$ copies. What price will bring in the greatest revenue?

$$
\begin{aligned}
& \text { demand }=200,000-10,000 p \\
& \text { revenue }=\text { demand } \times \text { price }=(200,000-10,000 p) p \\
& =R(p)=200,000 p-10,000 p^{2} \\
& R^{\prime}(p)=200,000-20,000 p \\
& R^{\prime}(p)=0 \Rightarrow 200,000-20,000 p=0 \\
& \Rightarrow p=10 \longleftarrow \text { Critical }
\end{aligned}
$$

Hercules Films is deciding on the price of the video release of its film Son of Frankenstein. Its marketing people estimate that at a price of p dollars, it can sell a total of $q=200,000-10,000 p$ copies. What price will bring in the greatest revenue?

$$
\begin{aligned}
& \text { demand }=200,000-10,000 p \\
& \text { revenue }=\text { demand } \times \text { price }=(200,000-10,000 p) p \\
& =R(p)=200,000 p-10,000 p^{2} \\
& R^{\prime}(p)=200,000-20,000 p \\
& R^{\prime}(p)=0 \Rightarrow 200,000-20,000 p=0 \\
& \Rightarrow p=10 \longleftarrow \text { Critical } \\
& R^{\prime \prime}(p)=-20,000 \Rightarrow R^{\prime \prime}(10)=-20,000 \\
& \Rightarrow \text { maximum revenue when } p=\$ 10 .
\end{aligned}
$$

Hercules Films is deciding on the price of the video release of its film Son of Frankenstein. Its marketing people estimate that at a price of p dollars, it can sell a total of $q=200,000-10,000 p$ copies. What price will bring in the greatest revenue?
demand $=200,000-10,000 p$
revenue $=$ demand \times price $=(200,000-10,000 p) p$
$=R(p)=200,000 p-10,000 p^{2}$
$R^{\prime}(p)=200,000-20,000 p$
$R^{\prime}(p)=0 \Rightarrow 200,000-20,000 p=0$
$\Rightarrow p=10 \longleftarrow \quad \begin{gathered}\text { Critical } \\ \text { Point }\end{gathered}$
$R^{\prime \prime}(p)=-20,000 \Rightarrow R^{\prime \prime}(10)=-20,000$
\Rightarrow maximum revenue when $p=\$ 10$.

