## ANTIDERIVATIVES

$$
\int f(x) d x=F(x)+c
$$

Often times we begin with a function that we know is a derivative of another function, and we want to find that second function.

## We call that second function an antiderivative of the first function.

Also, for convenience, we'll often denote the derivative by $f(x)$ and the antiderivative by $F(x)$.

For example, think about what might be the antiderivative of the function below.

$$
f(x)=3 x^{2}
$$

When we differentiate $x$ to a power, we multiply by the exponent and then decrease the exponent by 1.

$$
f(x)=3 x^{2}
$$

To get the antiderivative, we just reverse our steps. We add 1 to the exponent and then divide.

$$
\begin{aligned}
& f(x)=3 x^{2} \\
& F(x)=\frac{3 x^{2+1}}{2+1}=\frac{3 x^{3}}{3}=x^{3}
\end{aligned}
$$

However, this is not the only antiderivative of $f(x)$. If we add any constant term to $F(x)$, we get another antiderivative.

$$
\begin{aligned}
& f(x)=3 x^{2} \\
& F(x)=\frac{3 x^{2+1}}{2+1}=\frac{3 x^{3}}{3}=x^{3} \\
& F_{2}(x)=x^{3}+5
\end{aligned}
$$

In general, the family or collection of all antiderivatives of $f(x)$ is given by any particular antiderivative $F(x)$ plus an arbitrary constant.

$$
f(x)=3 x^{2}
$$

$$
F(x)=x^{3}+c=\text { family of all antiderivatives of } f(x)
$$

For reasons which won't be made clear until later on, we call the family of all antiderivative of $f(x)$ the indefinite integral of $f(x)$, and we denote this by an elongated $s$ that we call the integral sign.
$f(x)=3 x^{2}$

variable we are integrating with respect to

Theorem: If $f(x)=x^{n}, n \neq-1$, then $\int x^{n} d x=\frac{x^{n+1}}{n+1}+c$.

Example:

$$
\int x^{4} d x=?
$$

Example:

$$
\begin{aligned}
& \int x^{4} d x=? \\
& \int x^{4} d x=\frac{x^{5}}{5}+c
\end{aligned}
$$

Example:

$$
\int x^{10} d x=?
$$

Example:

$$
\int x^{10} d x=?
$$

$$
\int x^{10} d x=\frac{x^{11}}{11}+c
$$

Example:

$$
\int x^{1 / 2} d x=?
$$

Example:

$$
\begin{aligned}
& \int x^{1 / 2} d x=? \\
& \quad \int x^{1 / 2} d x=\frac{x^{3 / 2}}{3 / 2}+c=\frac{2 x^{3 / 2}}{3}+c
\end{aligned}
$$

Example:

$$
\int x^{-3} d x=?
$$

Example:

$$
\begin{aligned}
& \int x^{-3} d x=? \\
& \qquad \int x^{-3} d x=\frac{x^{-2}}{-2}+c=-\frac{1}{2 x^{2}}+c
\end{aligned}
$$

Since constant factors are not affected by the differentiation process, they are also not effected by the integration process.

$$
\int 5 x^{2} d x=\frac{5 x^{3}}{3}+c
$$

Also, since we can differentiate a function term by term, we can likewise integrate a function term by term.

$$
\int\left(5 x^{2}+2 x+3\right) d x=\frac{5 x^{3}}{3}+x^{2}+3 x+c
$$

Since the derivative of $f(x)=e^{x}$ is $\mathrm{e}^{x}$, an antiderivative of $e^{x}$ is also $e^{x}$.

$$
\int e^{x} d x=e^{x}+c
$$

An antiderivative of $f(x)=b^{x}$ is $b^{x} / \ln (b)$. We can verify this by differentiating.

$$
\begin{aligned}
& \text { Since } \frac{d \frac{b^{x}}{\ln b}}{d x}=\frac{1}{\ln b} b^{x} \ln b=b^{x}, \text { it follows that } \\
& \int b^{x} d x=\frac{b^{x}}{\ln b}+c .
\end{aligned}
$$

An antiderivative of $x^{-1}=1 / x$ is $I n|x|$. Again, this is true since the derivative of $\ln |x|$ is $1 / x$.

$$
\int x^{-1} d x=\int \frac{1}{x} d x=\ln |x|+c
$$

## SUMMARY

1. $\int x^{n} d x=\frac{x^{n+1}}{n+1}+c \quad(n \neq-1)$
2. $\int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x$
3. $\int x^{-1} d x=\ln |x|+c$
4. $\int e^{x} d x=e^{x}+c$
5. $\int b^{x} d x=\frac{b^{x}}{\ln b}+c$
6. $\int k f(x) d x=k \int f(x) d x$ ( $k$ a constant)

Example:

$$
\int\left[5 x^{3}+10 e^{x}+2^{x}+\frac{4}{x}\right] d x=?
$$

Example:
$\int\left[5 x^{3}+10 e^{x}+2^{x}+\frac{4}{x}\right] d x=?$
$\int\left[5 x^{3}+10 e^{x}+2^{x}+\frac{4}{x}\right] d x=\frac{5 x^{4}}{4}+10 e^{x}+\frac{2^{x}}{\ln 2}+4 \ln |x|+c$

If we are given an initial condition, then we can generally find a specific value for our constant of integration.
$f(x)=2 x+5$
$F(x)$ is an antiderivative of $f(x)$
$F(0)=3$
Find $F(x)$.

If we are given an initial condition, then we can generally find a specific value for our constant of integration.
$f(x)=2 x+5$
$F(x)$ is an antiderivative of $f(x)$
$F(0)=3$
Find $F(x)$.

$$
\begin{aligned}
& F(x)=\int(2 x+5) d x=x^{2}+5 x+c \\
& F(0)=3=0^{2}+5(0)+c=c \Rightarrow F(x)=x^{2}+5 x+3
\end{aligned}
$$

The marginal cost to produce baseball caps at a production level of $x$ caps is $4-0.001 x$ dollars per cap, and the cost of producing 100 caps is $\$ 500$. Find the cost function.

The marginal cost to produce baseball caps at a production level of $x$ caps is $4-0.001 x$ dollars per cap, and the cost of producing 100 caps is $\mathbf{\$ 5 0 0}$. Find the cost function.
$C(x)=\int(4-0.001 x) d x=4 x-0.001 \frac{x^{2}}{2}+C$
$=4 x-0.0005 x^{2}+c$

The marginal cost to produce baseball caps at a production level of $x$ caps is $4-0.001 x$ dollars per cap, and the cost of producing 100 caps is $\mathbf{\$ 5 0 0}$. Find the cost function.

$$
\begin{aligned}
& C(x)=\int(4-0.001 x) d x=4 x-0.001 \frac{x^{2}}{2}+c \\
& =4 x-0.0005 x^{2}+c
\end{aligned}
$$

$$
C(100)=500=4(100)-0.0005\left(100^{2}\right)+c
$$

$$
=395+c \Rightarrow c=105
$$

$$
\Rightarrow C(x)=4 x-0.0005 x^{2}+105 \text { dollars }
$$

The velocity of a particle moving along a straight line is given by $v(t)=4 t+1 \mathrm{~m} / \mathrm{s}$. Given that the particle is at position $s=2$ at time $t=1$, find the position function $s(t)$.

The velocity of a particle moving along a straight line is given by $v(t)=4 t+1 \mathrm{~m} / \mathrm{s}$. Given that the particle is at position $s=2$ at time $t=1$, find the position function $s(t)$.

$$
\begin{aligned}
& s(t)=\int(4 t+1) d t=\frac{4 t^{2}}{2}+t+c \\
& =2 t^{2}+t+c
\end{aligned}
$$

The velocity of a particle moving along a straight line is given by $v(t)=4 t+1 \mathrm{~m} / \mathrm{s}$. Given that the particle is at position $s=2$ at time $t=1$, find the position function $s(t)$.

$$
\begin{aligned}
& s(t)=\int(4 t+1) d t=\frac{4 t^{2}}{2}+t+c \\
& =2 t^{2}+t+c \\
& s(1)=2=2\left(1^{2}\right)+1+c \\
& =3+c \Rightarrow c=-1 \\
& \Rightarrow s(t)=2 t^{2}+t-1 \text { meters }
\end{aligned}
$$

