# TEMPLATES FOR HYPOTHESIS TESTING



### HYPOTHESIS TEST FOR THE MEAN STANDARD DEVIATION KNOWN

$$H_0: \mu =$$

$$H_1: \mu \neq >, \text{ or } <$$

Test Statistic Formula: 
$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$

Level of Significance:  $\alpha =$ 

P-Value: P =

Decision: Accept/Reject  $H_0$  (Fail to reject  $H_0$ )

### HYPOTHESIS TEST FOR THE MEAN STANDARD DEVIATION UNKNOWN

$$H_0: \mu =$$

$$H_1: \mu \neq >, \text{ or } <$$

Test Statistic Formula: 
$$t = \frac{\overline{x} - \mu}{s/\sqrt{n}}$$

Degrees of Freedom: df = n - 1

Level of Significance:  $\alpha =$ 

P-Value: P =

Decision: Accept/Reject  $H_0$  (Fail to reject  $H_0$ )

#### HYPOTHESIS TEST FOR TWO MEANS, INDEPENDENT SAMPLES AND STANDARD DEVIATIONS UNKNOWN

$$H_0: \mu_1 = \mu_2$$

$$H_1: \mu_1 \neq >, \text{ or } < \mu_2$$

$$H_1: \mu_1 \neq ,>, \text{ or } < \mu_2$$
Test Statistic Formula:  $t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ 

Level of Significance:  $\alpha = ...$ 

P-Value: P =

Decision: Accept/Reject  $H_0$  (Fail to reject  $H_0$ )

### HYPOTHESIS TEST FOR A PROPORTION

$$H_0: p =$$

$$H_1: p \neq >, \text{ or } <$$

Test Statistic Formula: 
$$z = \frac{\hat{p} - p}{\sqrt{(pq)/n}}$$

Level of Significance:  $\alpha =$ 

P-Value: P =

Decision: Accept/Reject  $H_0$  (Fail to reject  $H_0$ )

## HYPOTHESIS TEST FOR A LINEAR CORRELATION COEFFICIENT

 $H_0: \rho = 0$ 

 $H_1: \rho \neq 0$ 

Level of Significance:  $\alpha =$ 

P-Value: P =

Decision: Accept/Reject  $H_0$  (Fail to reject  $H_0$ )

### HYPOTHESIS TEST FOR A CONTINGENCY TABLE

 $H_0$ : \_\_\_\_\_ and \_\_\_\_ are independent

 $H_1$ : \_\_\_\_\_ and \_\_\_\_ are dependent

Test Statistic Formula:  $\chi^2 = \sum \frac{(O-E)^2}{E}$ 

Degrees of Freedom: df = (r-1)(c-1)

Level of Significance:  $\alpha =$ 

P-Value: P =

Decision: Accept/Reject  $H_0$  (Fail to reject  $H_0$ )

### HYPOTHESIS TEST FOR AN ANOVA

 $H_0: \mu_1 = \mu_2 = \dots = \mu_n$ 

 $H_1$ : At least one of the means is different

Test Statistic Formula:  $F = \frac{\text{variance between samples}}{\text{variance within samples}} = \frac{MS(\text{factor})}{MS(\text{error})}$ 

Numerator Degrees of Freedom: ndf = # of samples minus 1

Denominator Degrees of Freedom: ddf = # of data elements minus # of samples

Level of Significance:  $\alpha =$ 

P-Value: P =

Decision: Accept/Reject  $H_0$  (Fail to reject  $H_0$ )