THE NORMAL APPROXIMATION OF THE BINOMIAL DISTRIBUTION

Quite often, a binomial distribution will sort of like a discrete version of a normal distribution.

When this happens, we can use a corresponding normal distribution to estimate probabilities in a binomial distribution.

Our criteria for doing this will be that both $n p \geq 5$ and $n q \geq 5$.

Suppose we flip a fair coin 100 times, and $X=$ number of heads.

Then since $n p=(100)(.5)=50$, and $n q=(100)(.5)=50$, we can use a corresponding normal distribution to approximate binomial probabilities.

The mean of our normal distribution will be $\mu=n p=(100)(.5)=50$, and the standard deviation will be $\sigma=\sqrt{n p q}=\sqrt{(100)(.5)(.5)}=\sqrt{25}=5$.

Now let's estimate the probability that $x=60$. There's one problem we have to take care of first, though. Since the binomial distribution is discrete, but the normal distribution is continuous, we have to make what we call the correction for continuity.

$$
\begin{aligned}
& \mu=n p=(100)(.5)=50 \\
& \sigma=\sqrt{n p q}=\sqrt{(100)(.5)(.5)}=\sqrt{25}=5
\end{aligned}
$$

What this means is that we now have to think of the value 60 as extending across a continuum from 59.5 to 60.5 . Given that correction, we can now easily estimate the probability using our calculator.

$$
\begin{aligned}
& \mu=n p=(100)(.5)=50 \\
& \sigma=\sqrt{n p q}=\sqrt{(100)(.5)(.5)}=\sqrt{25}=5
\end{aligned}
$$

What this means is that we now have to think of the value 60 as extending across a continuum from 59.5 to 60.5 . Given that correction, we can now easily estimate the probability using our calculator.

$$
\begin{aligned}
& \mu=n p=(100)(.5)=50 \\
& \sigma=\sqrt{n p q}=\sqrt{(100)(.5)(.5)}=\sqrt{25}=5 \\
& P(x=60) \approx P(59.5 \leq x \leq 60.5) \\
& =\text { normalcdf }(59.5,60.5,50,5) \approx 0.0109
\end{aligned}
$$

And this is not far off from what we would get if we tried to compute the binomial probability directly.

$$
\begin{aligned}
& \mu=n p=(100)(.5)=50 \\
& \sigma=\sqrt{n p q}=\sqrt{(100)(.5)(.5)}=\sqrt{25}=5
\end{aligned}
$$

$P(x=60) \approx P(59.5 \leq x \leq 60.5)$
$=$ normalcdf $(59.5,60.5,50,5) \approx 0.0109$
$P(x=60)={ }_{100} C_{60}\left(.5^{60}\right)\left(.5^{40}\right)$
$=\operatorname{binompdf}(100, .5,60)=0.0108$

Now let's find the probability that x is less than 60, and remember to make the correction for continuity.

$$
\begin{aligned}
& \mu=n p=(100)(.5)=50 \\
& \sigma=\sqrt{n p q}=\sqrt{(100)(.5)(.5)}=\sqrt{25}=5
\end{aligned}
$$

Now let's find the probability that x is less than 60, and remember to make the correction for continuity.

$$
\begin{aligned}
& \mu=n p=(100)(.5)=50 \\
& \sigma=\sqrt{n p q}=\sqrt{(100)(.5)(.5)}=\sqrt{25}=5 \\
& P(x<60) \approx P(x<59.5) \\
& =\text { normalcdf }(-999999,59.5,50,5) \approx 0.9713
\end{aligned}
$$

Contrast this last result with the probability that x is at most 60.

$$
\begin{aligned}
& \mu=n p=(100)(.5)=50 \\
& \sigma=\sqrt{n p q}=\sqrt{(100)(.5)(.5)}=\sqrt{25}=5
\end{aligned}
$$

Contrast this last result with the probability that x is at most 60.

$$
\begin{aligned}
& \mu=n p=(100)(.5)=50 \\
& \sigma=\sqrt{n p q}=\sqrt{(100)(.5)(.5)}=\sqrt{25}=5 \\
& P(x \leq 60) \approx P(x \leq 60.5) \\
& =\text { normalcdf }(-999999,60.5,50,5) \approx 0.9821
\end{aligned}
$$

Next, let's look at the probability that x is more than 60.

$$
\begin{aligned}
& \mu=n p=(100)(.5)=50 \\
& \sigma=\sqrt{n p q}=\sqrt{(100)(.5)(.5)}=\sqrt{25}=5
\end{aligned}
$$

Next, let's look at the probability that x is more than 60.

$$
\begin{aligned}
& \mu=n p=(100)(.5)=50 \\
& \sigma=\sqrt{n p q}=\sqrt{(100)(.5)(.5)}=\sqrt{25}=5 \\
& P(x>60) \approx P(x>60.5) \\
& \quad=\operatorname{normalcdf}(60.5,999999,50,5) \approx 0.0179
\end{aligned}
$$

At finally, let's look at the probability that x is at least 60.

$$
\begin{aligned}
& \mu=n p=(100)(.5)=50 \\
& \sigma=\sqrt{n p q}=\sqrt{(100)(.5)(.5)}=\sqrt{25}=5
\end{aligned}
$$

At finally, let's look at the probability that x is at least 60 .

$$
\begin{aligned}
& \mu=n p=(100)(.5)=50 \\
& \sigma=\sqrt{n p q}=\sqrt{(100)(.5)(.5)}=\sqrt{25}=5 \\
& P(x \geq 60) \approx P(x \geq 59.5) \\
& \quad=\operatorname{normalcdf}(59.5,999999,50,5) \approx 0.0287
\end{aligned}
$$

At finally, let's look at the probability that x is at least 60.

And that's all there is to it!

$$
\begin{aligned}
& \mu=n p=(100)(.5)=50 \\
& \sigma=\sqrt{n p q}=\sqrt{(100)(.5)(.5)}=\sqrt{25}=5 \\
& P(x \geq 60) \approx P(x \geq 59.5) \\
& \quad=\text { normalcdf }(59.5,999999,50,5) \approx 0.0287
\end{aligned}
$$

