GETTING MORE NORMAL

In a true normal distribution, about 68\% of the data lies within one standard deviation of the mean, 95% within two standard deviations, and 99.7\% within three standard deviations.

Hence, in a normal distribution almost all of the data is within three standard deviations of the mean.

Suppose that IQ is normally distributed with a mean of 100 and a standard deviation of 15 .

What is the probability that someone has an IQ between 85 \& 115?

What is the probability that someone has an IQ between 85 \& 115?

$$
P(85<I Q<115)=68 \%
$$

What is the probability that someone has an IQ between 100 \& 115 ?

What is the probability that someone has an IQ between 100 \& 115 ?

$$
P(100<I Q<115)=34 \%
$$

What is the probability that someone has an IQ between 100 \& 130 ?

What is the probability that someone has an IQ between 100 \& 130 ?

$$
P(100<I Q<130)=47.5 \%
$$

What is the probability that someone has an $I Q$ higher than 130 ?

What is the probability that someone has an $I Q$ higher than 130 ?

$$
P(I Q>130)=100 \%-50 \%-47.5 \%=2.5 \%
$$

What is the probability that someone has an IQ between 55 \& 145?

What is the probability that someone has an IQ between 55 \& 145?

$$
P(55<I Q<145)=99.7 \%
$$

What is the probability that someone has an $I Q$ higher than 145 ?

What is the probability that someone has an $I Q$ higher than 145 ?

$$
P(I Q>145)=0.15 \%
$$

