
LINEAR REGRESSION
AND CORRELATION



Suppose we have the following paired data, also known
as bivariate data.

( ) ( ) ( )1,3 , 2,2 , 3,4



We can enter this data into lists in our calculator and
create a scatterplot.

( ) ( ) ( )1,3 , 2,2 , 3,4



We can also use our calculator to find the best fitting
straight line for this data.

( ) ( ) ( )1,3 , 2,2 , 3,4
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And now we have much to discuss.
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1

VARS Y VARS
FUNCTION Y

→ −
→ →



If you don’t see the values for r and r2 on your screen,
then do this:



If you don’t see the values for r and r2 on your screen,
then do this:



The number r is called the coefficient of linear correlation,
or the pearson product moment correlation coefficient
(among other things).



This number measures the strength of the linear or 
straight line relationship between the two variables.



We always have that -1 ≤ r ≤ 1.



The closer |r | is to 1, the stronger the linear relationship,
and the closer |r | is to 0, the weaker the linear relationship.



Some statisticians use the following classification scheme:

Weak: 0 .4
Moderate: .4 .7

Strong: .7 1
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Example 1:



Example 1:

The linear correlation is very weak.



Example 2:



Example 2:

This is a strong, positive linear correlation.
As the input variable increases, the output
variable also increases.



Example 3:



Example 3:

This is a moderate, negative linear correlation.
As the input variable increases, the output
variable decreases.



Example 4:

In this data set we changed just a single
point, and it changes the correlation from
moderate & negative to weak & positive.



Example 4:

In this data set we changed just a single
point, and it changes the correlation from
moderate & negative to weak & positive.

A single data point can strongly affect 
the degree of linear correlation.



Example 5:

There is clearly a mathematical relationship
between the variables, but it is not a linear
one. Hence, 0.r =



Example 5:

There is clearly a mathematical relationship
between the variables, but it is not a linear
one. Hence, 0.r =

NOTE: If we are dealing with a population instead of a 
sample, then the linear correlation coefficient is 
denoted by .rho ρ=



How do we compute the coefficient of linear correlation?
We basically convert each x and y coordinate to a z score,
multiply them together, add them up, and then divide by
the number of ordered pairs in order to adjust the size of
our sum.  Of course, when we are dealing with sample
data, we divide by n-1 instead of n.
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Here’s how it works in practice. The scatterplot below
clearly represents a positive linear correlation.  Also,
recall the formula for converting a raw score to a 
z score.
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If we draw some lines to represent the mean of the 
x coordinates and the mean of the y coordinates, then
most of our coordinates are either both above their
means or both below their respective means.
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This means that most of the products zxzy will be positive,
and, hence, r will be positive.
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Let’s now go back to our first example.

( ) ( ) ( )1,3 , 2,2 , 3,4



The line which best fits out data is called the
least squares regression line.

( ) ( ) ( )1,3 , 2,2 , 3,4



What this means is that if you look at the distance from
the line to each data point, square that distance, and add
everything up, then the sum of the squared distances will
be minimized if we are using the least squares regression
line.



Another way to look at it is this.  Think of our data points
as nails on a board, and think of the red lines as rubber 
bands connecting the nails to a broom stick.  Then 
eventually the broom stick will settle down to some
equilibrium position.  That final position is the least squares
regression line.



We often write the regression equation as y-hat to 
distinguish it from other y-values.

( ) ( ) ( )1,3 , 2,2 , 3,4

ˆ .5 2y x= +



Now let’s draw in a horizontal line at the position of
the mean of the y-values.

( ) ( ) ( )1,3 , 2,2 , 3,4

ˆ .5 2y x= + 3y =



For each x value in our data points, the explained
variance is the square of the distance between the line
y-bar and the regression line.

( ) ( ) ( )1,3 , 2,2 , 3,4

ˆ .5 2y x= +
2

2 2 2

ˆExplained Variance ( )
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The unexplained variance is the square of the distance 
between the regression line and the y values of the data 
points.

( ) ( ) ( )1,3 , 2,2 , 3,4

ˆ .5 2y x= +
3y =
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The coefficient of determination is the ratio of explained
variance to total variance.

( ) ( ) ( )1,3 , 2,2 , 3,4

ˆ .5 2y x= +
3y =

Explained Variance 0.5 0.5Coefficient of Determination =  0.25
Total Variance 0.5 1.5 2

= = =
+



The coefficient of determination is equal to r2.

( ) ( ) ( )1,3 , 2,2 , 3,4

ˆ .5 2y x= +
3y =

Explained Variance 0.5 0.5Coefficient of Determination =  0.25
Total Variance 0.5 1.5 2

= = =
+

2 0.25r =



One of the more common uses of the linear regression
equation is to make predictions.

( ) ( ) ( )1,3 , 2,2 , 3,4
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If we use the equation to “fill in the gaps” within the range
of our given x values, we call this interpolation.

( ) ( ) ( )1,3 , 2,2 , 3,4
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( )2.5,3.25



If we use the equation to predict values outside the range
of our given x values, we call this extrapolation.

( ) ( ) ( )1,3 , 2,2 , 3,4
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( )3.1,3.55



As a general rule, we should be careful about extrapolating
too far into either the future or the past.

( ) ( ) ( )1,3 , 2,2 , 3,4
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( )3.1,3.55



Finally, there’s one more question we should address. 
Below we found a linear correlation coefficient of 0.5.
How do we know that this is significantly different from
zero?

( ) ( ) ( )1,3 , 2,2 , 3,4



Fortunately, we have a test for that!  Let’s do it at the .05
level of significance.  Our null hypothesis is that ρ=0.

( ) ( ) ( )1,3 , 2,2 , 3,4



Also, here is a template to follow when doing a hypothesis
test to see if a linear correlation is significantly different
from zero.
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Unfortunately, in this case we cannot reject the null 
hypothesis, and that also means we shouldn’t use the
regression equation for predictions.  Instead, we use the
mean of the y values as a point estimate for predictions.

( ) ( ) ( )1,3 , 2,2 , 3,4
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