ESTIMATES

The best single estimate for a population parameter is the corresponding sample statistic. Such an estimate is called a point estimate.
\bar{x} is the best point estimate for μ
s is the best point estimate for σ
\hat{p} is the best point estimate for p

Often, though, we will want to find an interval that we are confident that our population parameter lies within. Such an estimate is called an interval estimate, and the resulting interval is called a confidence interval.
$69.362<\mu<78.638$

Let's suppose that we take a sample of size $n>30$ and mean x-bar, and that we want to find a 95\% confidence interval for the population mean, $m u$.

$69.362<\mu<78.638$

95\% confidence interval

Recall that even if the population, itself, isn't normally distributed, the distribution of sample means of size $n>30$ for this population will be approximately normally distributed.

$$
\mu_{\bar{x}}=\mu
$$

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

Furthermore, there is a 95% chance that our sample mean will lie within 1.96 standard deviations of the population mean.

95\% chance that $\mu-1.96 \cdot \frac{\sigma}{\sqrt{n}}<\bar{x}<\mu+1.96 \cdot \frac{\sigma}{\sqrt{n}}$

We now just do a little algebra.

$$
\begin{aligned}
& \mu-1.96 \cdot \frac{\sigma}{\sqrt{n}}<\bar{x}<\mu+1.96 \cdot \frac{\sigma}{\sqrt{n}} \\
& -1.96 \cdot \frac{\sigma}{\sqrt{n}}<\bar{x}-\mu<1.96 \cdot \frac{\sigma}{\sqrt{n}} \\
& -\bar{x}-1.96 \cdot \frac{\sigma}{\sqrt{n}}<-\mu<-\bar{x}+1.96 \cdot \frac{\sigma}{\sqrt{n}} \\
& \bar{x}+1.96 \cdot \frac{\sigma}{\sqrt{n}}>\mu>\bar{x}-1.96 \cdot \frac{\sigma}{\sqrt{n}} \\
& \bar{x}-1.96 \cdot \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+1.96 \cdot \frac{\sigma}{\sqrt{n}}
\end{aligned}
$$

The last inequality is called the 95\% confidence interval for the mean. There is a 95% chance that the interval we have constructed contains the true population mean.

$$
\bar{x}-1.96 \cdot \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+1.96 \cdot \frac{\sigma}{\sqrt{n}}
$$

In general, for a sample of size n, the
(1-alpha)\% confidence interval for the mean is given by:

$$
\bar{x}-z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}
$$

EXAMPLE: If a population has a standard deviation of 14 and if a sample of size 35 has a mean of 74 , find the 95\% confidence interval for the mean.

$$
\begin{gathered}
\bar{x}-z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}} \\
74-1.96 \cdot \frac{14}{\sqrt{35}}<\mu<74+1.96 \cdot \frac{14}{\sqrt{35}} \\
69.362<\mu<78.638
\end{gathered}
$$

We also say that this estimate has the following margin of error.

$$
E=z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}=1.96 \cdot \frac{14}{\sqrt{35}} \approx 4.638
$$

We can also do this on our calculator.

$$
\begin{aligned}
& \sigma=14 \\
& \bar{x}=74 \\
& n=35 \\
& C-\text { level }=.95
\end{aligned}
$$

ZInterval (69.362,78.638) $\bar{x}=74$
$\mathrm{n}=35$

$$
69.362<\mu<78.638
$$

We can additionally determine our sample mean and maximum error from this result.

$69.362<\mu<78.638$

We can additionally determine our sample mean and maximum error from this result.

$$
69.362<\mu<78.638
$$

$$
\begin{aligned}
& \bar{x}=\frac{78.638+69.362}{2}=74 \\
& E=\frac{78.638-69.362}{2}=4.638
\end{aligned}
$$

Typically, we don't know either the true population mean or the true population standard deviation. However, if our population is either normally distributed or our sample size n is greater than 30, then we may find a(1-alpha)\% confidence interval for the mean using the t-distribution.

The t-distribution has the following properties.

1. Bell shaped
2. Symmetrical
3. Thicker at the tails than the normal distribution
4. There is a unique t-distribution for each sample size n
5. A t-distribution for sample size n has $n-1$ degrees of freedom
6. The t-distribution approaches the normal distribution as n increases

Here's the formula for finding a (1-alpha)\% confidence interval for the mean using the t-distribution.

$$
\bar{x}-t_{\alpha / 2} \cdot \frac{s}{\sqrt{n}}<\mu<\bar{x}+t_{\alpha / 2} \cdot \frac{s}{\sqrt{n}}
$$

degrees of freedom $=n-1$

$$
\text { margin of error }=E=t_{\alpha / 2} \cdot \frac{s}{\sqrt{n}}
$$

EXAMPLE: If a population is normally distributed, $n=35$, x-bar=1.97, and $s=1.44$, find the 95% confidence interval for the mean.

$$
\text { degrees of freedom }=35-1=34
$$

$$
\begin{gathered}
\bar{x}-t_{.05 / 2} \cdot \frac{s}{\sqrt{n}}<\mu<\bar{x}+t_{.05 / 2} \cdot \frac{s}{\sqrt{n}} \\
1.97-2.03 \cdot \frac{1.44}{\sqrt{35}}<\mu<1.97+2.03 \cdot \frac{1.44}{\sqrt{35}} \\
1.4753<\mu<2.4647 \\
E=t_{.05 / 2} \cdot \frac{s}{\sqrt{n}}=2.03224 \cdot \frac{1.44}{\sqrt{35}}=0.4947
\end{gathered}
$$

We can do this one, too, on our calculator.

$$
\begin{aligned}
& \bar{x}=1.97 \\
& s=1.44 \\
& n=35 \\
& C-\text { level }=.95
\end{aligned}
$$

$1.4753<\mu<2.4647$

$$
E=\frac{2.4647-1.4753}{2}=0.4947
$$

Now let's consider another situation. Suppose a sample of 100 people votes on a proposition called proposition 1 to require everyone to take a course in statistics, and when the votes are tallied, 60% are in favor of the proposition and 40% are against.

We could, of course, consider this just one of many samples of size 100 that we could take from our population, and this results in a binomial distribution.

$$
\begin{aligned}
& n=100 \\
& x=\text { number of "yes" votes } \\
& \hat{p}=x / n
\end{aligned}
$$

If our sample size is sufficiently large, then we can approximate our binomial distribution by a corresponding normal distribution. In this case, our normal distribution will have, in general, the following mean and standard deviation.

$$
\begin{aligned}
\mu & =n p \\
\sigma & =\sqrt{n p(1-p)}=\sqrt{n p q}
\end{aligned}
$$

Hence, z-scores can be computed in this distribution by the following formula.

$$
\mu=n p
$$

$$
\sigma=\sqrt{n p(1-p)}=\sqrt{n p q}
$$

$$
z=\frac{x-\mu}{\sigma}=\frac{x-n p}{\sqrt{n p q}}=\frac{\frac{x-n p}{n}}{\frac{\sqrt{n p q}}{n}}=\frac{\frac{x}{n}-p}{\sqrt{\frac{n p q}{n^{2}}}}=\frac{\hat{p}-p}{\sqrt{\frac{p q}{n}}}
$$

Furthermore, if we don't know the true value of p for our population, then we generally use p-hat and q-hat in our formulas as estimates.

$$
\begin{aligned}
& \mu=n p \\
& \sigma=\sqrt{n p(1-p)}=\sqrt{n p q} \\
& z=\frac{\hat{p}-p}{\sqrt{\frac{\hat{p} \hat{q}}{n}}}
\end{aligned}
$$

We're now ready to find a $1-\alpha$ confidence interval. Thus, suppose our proportion, when converted to a z-score, lies between $-z_{\alpha / 2}$ and $z_{\alpha / 2}$. Then here's what happens.

$$
\begin{aligned}
& -z_{\alpha / 2}<z<z_{\alpha / 2} \Rightarrow-z_{\alpha / 2}<\frac{\hat{p}-p}{\sqrt{\frac{\hat{p} \hat{q}}{n}}}<z_{\alpha / 2} \\
& \Rightarrow-z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}<\hat{p}-p<z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}
\end{aligned}
$$

We're now ready to find a $1-\alpha$ confidence interval. Thus, suppose our proportion, when converted to a z-score, lies between $-z_{\alpha / 2}$ and $z_{\alpha / 2}$. Then here's what happens.

$$
\begin{aligned}
& \Rightarrow-\hat{p}-z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}<-p<-\hat{p}+z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}} \\
& \Rightarrow \hat{p}+z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}>p>\hat{p}-z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}} \\
& \Rightarrow \hat{p}-z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}<p<\hat{p}+z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}
\end{aligned}
$$

We're now good to go! Suppose in our example that we only had a sample of 100 voters with p-hat $=.6$ and q-hat $=.4$. We can now set up a 95% confidence interval for the proportion of voters in favor of the proposition.

$$
\begin{aligned}
& \hat{p}-z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}<p<\hat{p}+z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}} \\
& .6-1.96 \sqrt{\frac{(.6)(.4)}{100}}<p<.6+1.96 \sqrt{\frac{(.6)(.4)}{100}} \\
& .50398<p<.69602 \\
& 50.398 \%<p \cdot 100 \%<69.602 \%
\end{aligned}
$$

The margin of error in this case is:

$$
E=z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}=1.96 \sqrt{\frac{(.6)(.4)}{100}}=.09602=9.602 \%
$$

And this, too, can be done on the calculator.

ELIT CHLCMES采	
1-Pror ${ }^{\text {cose }}$	
6: 2-PropzTEst	
7: 2 Intervel...	
8: Thterval.	
HR1-Frorzirt...	

1-FropzIrt.
(56598, 69662)
官=6
$\mathrm{F}=\mathrm{G}=1 \mathrm{G}$

$$
E=\frac{.69602-.50398}{2}=.09602=9.602 \%
$$

Notice that we can solve our margin of error formula for n. We can use this to determine the best sample size for a desired margin of error.

$$
\begin{aligned}
& E=z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}} \\
& \Rightarrow E^{2}=\left[Z_{\alpha / 2}\right]^{2} \cdot \frac{\hat{p} \hat{q}}{n} \\
& \Rightarrow n=\left[Z_{\alpha / 2}\right]^{2} \cdot \frac{\hat{p} \hat{q}}{E^{2}}
\end{aligned}
$$

Also, we normally don't know p-hat or q-hat before taking a sample, so we'll just use 0.5 as the estimate for each. And now if we want a 95\% confidence interval with a margin of error of 2%, then this is what our estimated sample size should be:

$$
n=\left[z_{\alpha / 2}\right]^{2} \cdot \frac{\hat{p} \hat{q}}{E^{2}}=1.96^{2} \cdot \frac{(.5)(.5)}{(.02)^{2}}=2401
$$

If our result had contained a fractional part, then we would always round up to the next whole number

$$
n=\left[z_{\alpha / 2}\right]^{2} \cdot \frac{\hat{p} \hat{q}}{E^{2}}=1.96^{2} \cdot \frac{(.5)(.5)}{(.02)^{2}}=2401
$$

