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The best single estimate for a population parameter
IS the corresponding sample statistic. Such an estimate
Is called a point estimate.

X 1S the best point estimate for
S 1S the best point estimate for o
p is the best point estimate for p



Often, though, we will want to find an interval that we are
confident that our population parameter lies within. Such
an estimate is called an interval estimate, and the resulting
Interval is called a confidence interval.

69.362 < 11 < 78.638



Let’s suppose that we take a sample of size n > 30 and mean
x-bar, and that we want to find a 95% confidence interval
for the population mean, mu.

09.362 < 11 < 718.638

05% confidence interval



Recall that even if the population, itself, isn’t normally
distributed, the distribution of sample means of size n > 30
for this population will be approximately normally distributed.




Furthermore, there is a 95% chance that our sample mean
will lie within 1.96 standard deviations of the population
mean.
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We now just do a little algebra.
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The last inequality is called the 95% confidence interval
for the mean. There is a 95% chance that the interval
we have constructed contains the true population mean.
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In general, for a sample of size n, the
(1-alpha)% confidence interval for the mean is given by:



EXAMPLE: If a population has a standard deviation of 14
and if a sample of size 35 has a mean of 74, find the
95% confidence interval for the mean.

_ O _ O
X_Za/Z 'ﬁ<ﬂ<x+za/2 ﬁ
14 14
4-1960 - —< u<74+1.96-—
\/35 # \/35

69.362 < 11 < 78.638



We also say that this estimate has the following margin
of error.

E=7,, -2 =196~ ~ 4,638

Jn V/35



We can also do this on our calculator.
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We can additionally determine our sample mean and
maximum error from this result.
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69.362 < 1 < 78.638



We can additionally determine our sample mean and
maximum error from this result.
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Typically, we don’'t know either the true population mean or
the true population standard deviation. However, if our
population is either normally distributed or our sample size n

IS greater than 30, then we may find a(7-alpha)% confidence
interval for the mean using the t-distribution.

t Distribution - Probability Density Function

n = Sample Size =7
v = Degrees of Freedom = 6

-
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The t-distribution has the following properties.
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. Bell shaped
. Symmetrical
. Thicker at the tails than the normal distribution
There Is a unique t-distribution for each sample size n
. A t-distribution for sample size n has n-1 degrees of
freedom
The t-distribution approaches the normal distribution

as n increases



Here’s the formula for finding a (1-alpha)% confidence
interval for the mean using the t-distribution.
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EXAMPLE: If a population is normally distributed, n=35,
x-bar=1.97, and s=1.44, find the 95% confidence interval
for the mean.

degrees of freedom =35-1=34
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We can do this one, too, on our calculator.

X =1.97
s=1.44
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c_ 2.4647;1.4753 _ 04947




Now let’s consider another situation. Suppose a sample of
100 people votes on a proposition called proposition 1 to
require everyone to take a course in statistics, and when
the votes are tallied, 60% are in favor of the proposition
and 40% are against.

{} n =100
& X =160
v p=.6=60%

Z



We could, of course, consider this just one of many samples
of size 100 that we could take from our population, and this
results in a binomial distribution.

n =100
X = number of "yes" votes

p=X/n



If our sample size is sufficiently large, then we can
approximate our binomial distribution by a corresponding
normal distribution. In this case, our normal distribution
will have, in general, the following mean and

standard deviation.

f=np

o =/np(L- p) =+/npq




Hence,z-scores can be computed in this distribution by the
following formula.

1=np
o =/np(L— p) =+/npg
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Furthermore, if we don’t know the true value of p for our
population, then we generally use p-hat and g-hat in our
formulas as estimates.

1=np
o =/np(L— p) =+/npq
z:pif
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We’re now ready to find a 7-a confidence interval. Thus,
suppose our proportion, when converted to a z-score, lies
between -z, and z,,. Then here’s what happens.
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We’re now ready to find a 7-a confidence interval. Thus,
suppose our proportion, when converted to a z-score, lies
between -z, and z,,. Then here’s what happens.
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:ﬁ_za/Z %<p<ﬁ+za/2 %



We're now good to go! Suppose in our example that we only
had a sample of 100 voters with p-hat = .6 and g-hat = .4.
We can now set up a 95% confidence interval for the
proportion of voters in favor of the proposition.
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The margin of error in this case is:

E=7,, | :1.96\/ 04 _ 09602 = 9.602%
n 100



And this, too, can be done on the calculator.
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Notice that we can solve our margin of error formula for n.
We can use this to determine the best sample size for a
desired margin of error.



Also, we normally don’t know p-hat or g-hat before taking a
sample, so we’ll just use 0.5 as the estimate for each. And
now If we want a 95% confidence interval with a margin of

error of 2%, then this is what our estimated sample size
should be:

n=[z,, - 22 1967 1209 _ o400
g (.02)



If our result had contained a fractional part, then we would
always round up to the next whole number

n=[z,, - 22 1967 1209 _ o400
g (.02)



