
ESTIMATES



The best single estimate for a population parameter
is the corresponding sample statistic.  Such an estimate
is called a point estimate.
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Often, though, we will want to find an interval that we are
confident that our population parameter lies within. Such
an estimate is called an interval estimate, and the resulting
interval is called a confidence interval.
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Let’s suppose that we take a sample of size n > 30 and mean
x-bar, and that we want to find a 95% confidence interval
for the population mean, mu.
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Recall that even if the population, itself, isn’t normally 
distributed, the distribution of sample means of size n > 30 
for this population will be approximately normally distributed.
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Furthermore, there is a 95% chance that our sample mean
will lie within 1.96 standard deviations of the population
mean.
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We now just do a little algebra.
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The last inequality is called the 95% confidence interval
for the mean. There is a 95% chance that the interval
we have constructed contains the true population mean.
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In general, for a sample of size n, the 
(1-alpha)% confidence interval for the mean is given by:
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EXAMPLE: If a population has a standard deviation of 14
and if a sample of size 35 has a mean of 74, find the 
95% confidence interval for the mean.
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We also say that this estimate has the following margin
of error. 
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We can also do this on our calculator. 
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We can additionally determine our sample mean and 
maximum error from this result. 
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We can additionally determine our sample mean and 
maximum error from this result. 
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Typically, we don’t know either the true population mean or
the true population standard deviation.  However, if our
population is either normally distributed or our sample size n
is greater than 30, then we may find a(1-alpha)% confidence 
interval for the mean using the t-distribution.



The t-distribution has the following properties.

1. Bell shaped
2. Symmetrical
3. Thicker at the tails than the normal distribution
4. There is a unique t-distribution for each sample size n
5. A t-distribution for sample size n has n-1 degrees of

freedom
6. The t-distribution approaches the normal distribution

as n increases



Here’s the formula for finding a (1-alpha)% confidence 
interval for the mean using the t-distribution.
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EXAMPLE: If a population is normally distributed, n=35,
x-bar=1.97, and s=1.44, find the 95% confidence interval
for the mean.
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We can do this one, too, on our calculator.
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Now let’s consider another situation.  Suppose a sample of
100 people votes on a proposition called proposition 1 to
require everyone to take a course in statistics, and when
the votes are tallied, 60% are in favor of the proposition
and 40% are against.
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We could, of course, consider this just one of many samples
of size 100 that we could take from our population, and this
results in a binomial distribution. 
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If our sample size is sufficiently large, then we can
approximate our binomial distribution by a corresponding
normal distribution. In this case, our normal distribution
will have, in general, the following mean and 
standard deviation. 
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Hence,z-scores can be computed in this distribution by the 
following formula.
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Furthermore, if we don’t know the true value of p for our
population, then we generally use p-hat and q-hat in our
formulas as estimates.
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We’re now ready to find a 1-α confidence interval.  Thus, 
suppose our proportion, when converted to a z-score, lies
between -zα/2 and zα/2. Then here’s what happens.
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We’re now ready to find a 1-α confidence interval.  Thus, 
suppose our proportion, when converted to a z-score, lies
between -zα/2 and zα/2. Then here’s what happens.
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We’re now good to go!  Suppose in our example that we only
had a sample of 100 voters with p-hat = .6 and q-hat = .4.
We can now set up a 95% confidence interval for the 
proportion of voters in favor of the proposition.
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The margin of error in this case is:
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And this, too, can be done on the calculator.
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Notice that we can solve our margin of error formula for n.
We can use this to determine the best sample size for a
desired margin of error.
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Also, we normally don’t know p-hat or q-hat before taking a 
sample, so we’ll just use 0.5 as the estimate for each.  And 
now if we want a 95% confidence interval with a margin of 
error of 2%, then this is what our estimated sample size 
should be:
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If our result had contained a fractional part, then we would
always round up to the next whole number
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