CONTINGENCY TABLES

Suppose we have two categorical (nonnumerical) variables such as gender (male/female) and political party (Republican/Democrat), and we want to determine if there is a relationship between these variables. Our null hypothesis, of course, will assume that there is no relationship, and we will set our level of significance to alpha $=.01$.

In particular, suppose we have a sample of 100 people, and the breakdown is as shown in the table below.

The question now is if there is no relationship between gender and political party, then what numbers should we expect to see?

Observed

Fortunately, we can answer that question.

For example, 40\% of our sample is male, and hence, we should expect 40% of the 70 democrats to be male.

In other words, our expectation for the number of male democrats is [(70)(40)]/100.

Notice that this amounts to a column total times a row total divided by the grand total.

Observed

MF	D	R	
	20	20	40
	50	10	60
	70	30	100

$$
\frac{70 \cdot 40}{100}=\frac{\text { column total } \times \text { row total }}{\text { grand total }}
$$

We can find all of our expected values this way.

Or in other words,

	Observed		40
	D	R	
M	20	20	
F	50	10	60
	70	30	100

Expected

A requirement now for continuing is that all the expected values be greater than or equal to 5 . This requirement is met.

Expected

The idea now is that if the difference between the observed values and the expected values is too large, then there is a significant difference.

Observed

In particular, for each cell we will look at observed minus expected, square the difference to get rid of negatives, and then express the result as a fraction of the expected value. Observed

$\underline{(O-E)^{2}}$
E

Expected

Next, we add it all up.

The distribution that is used with this test is called the chi-squared distribution.

The typical chi-squared distribution is asymmetrial, and degrees of freedom $=($ rows -1$) \times($ columns -1$)$.

Also, our test will be a one-tail test since we only reject the null hypothesis if the differences are too large.

To determine if this calculated value is too large we will use the CHI-SQUARE TEST on our calculator.

First, enter the observed values into a matrix in your calculator, and press $2^{\text {nd }}$ QUIT to return to the home screen.

Now, go to STAT and then TESTS, and select the CHI-SQUARE TEST.

MF	Observed		4060
	D	R	
	20	20	
	50	10	
	70	30	100

Your observed values should be stored in matrix A. Scroll down to calculate and hit ENTER, and your expected values will automatically be computed and stored in matrix
B.

The low P-value (less than .01) indicates that we must reject the null hypothesis. In other words, there is evidence of a relationhip between the variables gender and political party.

And here is our more formal hypothesis test.
H_{0} : Gender and Political Party are independent
H_{1} : Gender and Political Party are dependent
Test Statistic Formula: $\chi^{2}=\sum \frac{(O-E)^{2}}{E}$
Degrees of Freedom: $d f=1$
Level of Significance: $\alpha=.01$
P-Value: $P=0.0004$
Decision: Reject H_{0}

Sometimes we have just a single row or column, and we want to know if our frequencies match what is expected. In other words, we want to test for goodness-of-fit. This test is available on the TI-84 calculator, but not the TI-83. Thus, we'll just give you a demonstration of how it works. We'll use the same distribution and test statistic formula as before, and we will again require that the expected values be at least five.

Suppose we have a sample of numerical data of size 1000, and we suspect that the data is normally distributed. If this is so, then we expect there to be certain percentages present based on how many standard deviations we are from the mean.

INTERVAL	PERCENTAGE
more than 2 standard deviations below the mean	2%
1 to 2 standard devations below the mean	14%
1 or fewer standard deviations below the mean	34%
1 or fewer standard deviations above the mean	34%
1 to 2 standard deviations above the mean	14%
more than 2 standard deviations above the mean	2%

Now suppose our data is distributed as below.

DEVIATIONS FROM THE MEAN	OBSERVED FREQUENCY	EXPECTED FREQUENCY
>2 below	10	20
1 to 2 below	160	140
<1 below	320	340
<1 above	380	340
1 to 2 above	130	140
>2 above	20	20

In our TI-84 calculator we enter our observed frequencies into List 1, our expected frequencies into List 2, and we select the CHI SQUARE GOF TEST. Also, since we have 6 categories, we have 5 degrees of freedom. Additionally, we will use alpha $=.01$.

DEVIATIONS FROM THE MEAN	OBSERVED FREQUENCY	EXPECTED FREQUENCY
>2 below	10	20
1 to 2 below	160	140
<1 below	320	340
<1 above	380	340
1 to 2 above	130	140
>2 above	20	20

And here is the result.

L1	Lz	L3	z
10	20	------	
160	140		
3 EO	340		
\%	340		
120	1400		
L2\%) =			

EDIT CHLG MESTE Br 2 -Pror ZInt
C:xz-Test
㽖め2G0F-Test.
E:2-S.mFFTest...
F:LinRegTTest.
G: LinRegTInt.
H: AHOWAC


```k2giof-Test Observed:Li ExFEGted:Lz -ff:5 Calculgte Dr`aw```



At the ． 01 level of significance，we cannot reject the null hypothesis．

LT	Lz	｜L3	$z$
10	20	－－－－－－	
160	140		
320	340		
13000000	340		
20	$20^{\circ}$		
Lご，			




x 2 GOF－TEst   Observed：Li   ExFECted：Lz － $\mathrm{df}: 5$   EElculate Dr：au



And here is our more formal analysis.
$H_{0}$ : The data fit a normal distribution
$H_{1}$ : The data do not fit a normal distribution
Test Statistic Formula: $\chi^{2}=\sum \frac{(O-E)^{2}}{E}$
Degrees of Freedom: $d f=5$
Level of Significance: $\alpha=.01$
P-Value: $P=0.0130$
Decision: Fail to reject $H_{0}$

