CHARTS AND GRAPHS

Suppose we give a test that results in the following 20 grades. How do we organize the results?
$99,52,63,71,96,59,79,75,68,58,78,84,48,49,54$, 86, 40, 66, 91, 87

The natural thing to do is to organize the data into classes. Notice also that the lowest grade is 40 and the highest is 99 .
$99,52,63,71,96,59,79,75,68,58,78,84,48,49,54$, 86, 40, 66, 91, 87

CLASS
40-49
50-59
60-69
70-79
80-89
90-99

The smallest value that can go into a class is called its lower class limit.
$99,52,63,71,96,59,79,75,68,58,78,84,48,49,54$, 86, 40, 66, 91, 87

```
CLASS
    Lower Class Limits: 40,50,60,70,80,90
40-49
50-59
60-69
70-79
80-89
90-99
```

The largest value that can go into a class is called its upper class limit.
$99,52,63,71,96,59,79,75,68,58,78,84,48,49,54$, 86, 40, 66, 91, 87

| CLASS | Lower Class Limits: | $40,50,60,70,80,90$ |
| :--- | :--- | :--- | :--- |
| $40-49$ | | |
| $50-59$ | | |
| $60-69$ | | |
| $70-79$ | | |
| $80-89$ | | |
| $90-99$ | | |

The class boundaries fall between consecutive classes and before the first class and after the last class.
$99,52,63,71,96,59,79,75,68,58,78,84,48,49,54$, 86, 40, 66, 91, 87

CLASS		Lower Class Limits:
40-49	$40,50,60,70,80,90$	
$50-59$	Upper Class Limits: $\quad 49,59,69,79,89,99$	
$60-69$		
$70-79$		
$80-89$		
$90-99$		

The class width is the difference between two consecutive lower class limits. When possible, use the same width for each class.
$99,52,63,71,96,59,79,75,68,58,78,84,48,49,54$, 86, 40, 66, 91, 87

| CLASS | Lower Class Limits: $\quad 40,50,60,70,80,90$ |
| :--- | :--- | :--- |
| $40-49$ | Upper Class Limits: $\quad 49,59,69,79,89,99$ |
| $50-59$ | Class Boundaries: $39.5,49.5,59.5,69.5,79.5,89.5,99.5$ |
| $60-69$ | Class Width: $50-40=10$ |
| $70-79$ | |
| $80-89$ | |
| $90-99$ | |

The average of a lower class limit with its corresponding upper class limit is called the class midpoint.
$99,52,63,71,96,59,79,75,68,58,78,84,48,49,54$, 86, 40, 66, 91, 87

CLASS	Lower Class Limits: $40,50,60,70,80,90$
$40-49$	Upper Class Limits: $49,59,69,79,89,99$
$50-59$	Class Boundaries: $39.5,49.5,59.5,69.5,79.5,89.5,99.5$
$60-69$	Class Width: $50-40=10$
$70-79$	Class midpoints: $44.5,54.5,64.5,74.5,84.5,94.5$
$80-89$	
$90-99$	

To organize the data, we usually establish classes, perform tallies, and construct a frequency distribution.
$99,52,63,71,96,59,79,75,68,58,78,84,48,49,54$, 86, 40, 66, 91, 87

CLASS	TALLY	FREQUENCY
$40-49$	IIII	3
$50-59$	IIII	4
$60-69$	III	3
$70-79$	IIII	4
$80-89$	III	3
$90-99$	III	3

We can also express the results using proportions or percentages to get a percentage frequency distribution.
$99,52,63,71,96,59,79,75,68,58,78,84,48,49,54$, 86, 40, 66, 91, 87

CLASS	TALLY	FREQUENCY	PERCENTAGE
$40-49$	III	3	15%
$50-59$	IIII	4	20%
$60-69$	III	3	15%
$70-79$	IIII	4	20%
$80-89$	IIII	3	15%
$90-99$	III	3	15%

We can now create a bar graph of the frequencies called a histogram. Notice that usually there is no separation between the bars in a histogram.

We can also create a histogram using our TI-86/84 calculator.

$99,52,63,71,96,59,79,75,68,58,78,84,48,49,54$, 86, 40, 66, 91, 87

WIHLOW
8min $=36$
Max $=110$
¢ 5 cloig
M1n=-2
Max $=5$
Yres=1

When using the calculator to create your histogram, label the lower class limits and the frequency of each bar.
$99,52,63,71,96,59,79,75,68,58,78,84,48,49,54$, 86, 40, 66, 91, 87

We can also create histograms that represent proportions or percentages instead of frequency counts.
$99,52,63,71,96,59,79,75,68,58,78,84,48,49,54$, 86, 40, 66, 91, 87

Below is the same data organized into a line graph instead of a histogram. Notice that the frequencies are plotted at the class midpoints.
$99,52,63,71,96,59,79,75,68,58,78,84,48,49,54$, 86, 40, 66, 91, 87

We can also create a line graph on our calculator by putting class midpoints in one list and frequencies in the other.

Class midpoints: $44.5,54.5,64.5,74.5,84.5,94.5$
Frequencies: $\quad 3,4,3,4,3,3$

L1	\|LE	LS	z		
44.5	3	------			
54.5	4				
74.5	3				
14.5	3				
94.5					
L2(7) $=$					

KOTDI HENORY 3T200M Dut. 4: ZDecimal 5: 25:4are 6: zst andard 7:ZTri9 8: ZInteger ER200m5t.et.

If we don't connect the dots, then we call it a scatterplot.

Class midpoints: $44.5,54.5,64.5,74.5,84.5,94.5$ Frequencies: $\quad 3,4,3,4,3,3$

L1	L2	[23	z
44.5	3	------	
54.5	4		
74.	$\frac{4}{4}$		
㫨:5	$\stackrel{3}{2}$		
94.5			
L2(7) $=$			

¢\%Oロm Dut
4 : VGlerimal
6: 75tarad.ara
7:2Trig
Q4200mSt.

If we add the points $(34.5,0) \&(104.5,0)$ to tie down the ends，then we call it a frequency polygon．

Class midpoints： $34.5,44.5,54.5,64.5,74.5,84.5,94.5,104.5$ Frequencies：$\quad 0,3,4,3,4,3,3,0$

104i Fide Fibts Ori 0 Klist： L_{1} Ylist：Lz Mョr゙心：－

FT0 MENOP	

Anytime the homework asks you to do a frequency polygon, you can do a line graph instead.

Class midpoints: $34.5,44.5,54.5,64.5,74.5,84.5,94.5,104.5$
Frequencies: $\quad 0,3,4,3,4,3,3,0$

Rom Dut. zDecimal 25atare 6: 25t andar 7: ZTrig 6: Fint

Also, if we plot numerical data over time, we call it a time-series. Below is a graph of the ups and downs of the S\&P-500 over the past decade.

Another thing we can do is to create a frequency distribution and bar graph using letter grades instead of classes. When we create a graph using categories, it's traditional to put separation between the bars.

And of course, we can do this with percentages, too.

GRADE PERCENTAGE

F	35%
D	15%
C	20%
B	15%
A	15%

You can even make the bars horizontal instead of vertical, and in programs like Excel you can add all sorts of special effects!

A multiple bar graph has two or more sets of bars,.

And let's not forget the ever popular pie chart!

GRADE	FREQUENCY
F	7
D	3
C	4
B	3
A	3

We're now going to look at some other kinds of data displays beginning with a Pareto chart. A Pareto chart arranges the bars in descending order by count or percentage.

GRADE	FREQUENCY
F	7
D	3
C	4
B	3
A	3

A variation of the frequency distribution we did earlier is the cumulative frequency distribution.

And of course, we can also do a cumulative relative

 frequency distribution.
SCORE CUMULATIVE REALATIVE FREQUENCY

less than 50
less than 60
less than 70
less than 80
less than 90
less than 100

15\%

35\%
50\%
70\%
85\%
100\%

A line graph that displays cumulative frequencies is called an ogive. We will label the horizontal axis using class boundaries.
$99,52,63,71,96,59,79,75,68,58,78,84,48,49,54$, 86, 40, 66, 91, 87

Fint Flotz F1ots Bri Off
Klistiti
YlisteLz
MEr*! - +

FOTD] FEPTOF
3Froum Dot.
6: 7Staraugrod
7: 7 Trig
8: 7 Intager*
-4Voomstat

Before technology, a preliminary organization of data was often done using a stem-\&-leaf plot. Below is a display with single digit leaves.
$99,52,63,71,96,59,79,75,68,58,78,84,48,49,54$, 86, 40, 66, 91, 87

STEM	LEAF
4	$8,9,0$
5	$2,9,8,4$
6	$3,8,6$
7	$1,9,5,8$
8	$4,6,7$
9	$9,6,1$

We can turn this stem-\&-leaf plot into a dot plot as follows.

STEM	LEAF
4	$8,9,0$
5	$2,9,8,4$
6	$3,8,6$
7	$1,9,5,8$
8	$4,6,7$
9	$9,6,1$

L1	\|LE	\|L3	2
4	F	------	
4	\underline{z}		
5	1		
5	$\underline{8}$		
5	$\frac{4}{4}$		
L20			

