
ANALYSIS OF VARIANCE



It’s been said that all statistics is about analyzing variance,
i.e. why one measurement differs from another and what 
that means.



In this presentation we will discuss how to determine if
means from several samples are all equal to one another 
or not.  The technique is called a one-way analysis of 
variance or a one-way ANOVA.



Before we start, though, a good question is if we simply
have three samples and if our null hypothesis is that
the three sample means are all equal to one another, then
why not simply do something like three separate t-tests?



Here is the answer.  Suppose our null hypothesis is as 
below and that we want to do a test at the .05 level of
significance.

0 1 2 3:H u μ μ= =



Recall, too, that a Type I Error is the probability of 
rejecting a true null hypothesis, and this is the same as
our level of significance, .05.

0 1 2 3:H u μ μ= =



Hence, the probability of not making a Type I Error is 
1 - .05 = .95.
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However, if we do three separate tests for equality of
means, then the probability of not making a Type I Error
changes.
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And the resulting alpha is 1 - .857375 = 0.142625.
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Hence, our probability of making a Type I Error has gone
from 5% to 14.2625%, and we call this inflating the alpha.
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Thus, if we can do just a single test, then we can minimize
the probability of making a Type I Error.
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Let’s continue with the assumption that we have three 
samples with three means that are equal to one another.

0 1 2 3:H u μ μ= =



The idea behind our procedure is that if we combine the
three samples together, then we can compute the overall
variance in two ways.

0 1 2 3:H u μ μ= =



The first way would be to simply compute the variance of
the sample means.  This is called the variance between
samples.  It is also known as the mean square treatment
or mean square factor.

0 1 2 3:H u μ μ= =

(treatment) (factor)MS MS=



Treatment or factor refers to what is being studied such as
the effects of different medications or other medical 
treatments.
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Square refers to the fact that the variance is the square
of the standard deviation.
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And finally, mean refers to the fact that we are trying to
find the mean or average squared deviation between
the sample means.
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The second way to estimate the overall variance is to find
the variance within each sample and then take an average.
We call this the variance within samples or the
mean square error.
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If we now take the ratio of the two estimates, then we get
a value that pertains to an F distribution, named after
Sir Roland Fisher who pioneered this technique.
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We will only reject our null hypothesis if the numerator is 
too large, and this will happen only if there are “large”
differences between the sample means.  Thus, we do
a one-tailed test.
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Also, we have both numerator degrees of freedom
and denominator degrees of freedom.
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The numerator degrees of freedom is equal to one less
than the number of levels or categories in our factor
(treatment).  Or in other words, one less than the number
of samples.
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The denominator degrees of freedom is equal to the total
number of elements of data minus the number of 
categories.
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The is the same thing you would get if you subtracted one
from the size of each sample and then added up the results.
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Fortunately, our calculator will do all of this for us
automatically.
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Example:  A cyclist rides in a three mile race, and each
mile is composed of 5 laps.  The cyclist records in seconds
the amount of time that each lap takes.  Is there a 
difference in the amount of time it takes him to do each
mile? Use alpha = .05.
Mile 1 195 204 203 202 201
Mile 2 199 202 201 197 199
Mile 3 214 211 209 211 209
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The question now is which mean is different from the
others?

Mile 1 195 204 203 202 201
Mile 2 199 202 201 197 199
Mile 3 214 211 209 211 209



If we have sophisticated software for ANOVA, we can follow
up with a post-hoc test.

Mile 1 195 204 203 202 201
Mile 2 199 202 201 197 199
Mile 3 214 211 209 211 209

2 372.400 186.200 27.249 <.0001 54.498 1.000
12 82.000 6.833

DF Sum of Squares Mean Square F-Value P-Value Lambda Pow er
MILE
Residual

ANOVA Table for TIMES

1.400 5.487
-9.800 5.510 S

-11.200 3.616 S

Mean Diff. Crit. Diff
mile 1, mile 2
mile 1, mile 3
mile 2, mile 3

Games/Howell for TIMES
Effect: MILE
Significance Level: 5 %



We can also create plots with 95% confidence interval
bars in order to see where the differences are.
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With a TI-83/84 calculator, though, we can use boxplots
to estimate what’s going on.

Mile 1 195 204 203 202 201
Mile 2 199 202 201 197 199
Mile 3 214 211 209 211 209



There are some basic assumptions that we make, though,
whenever we do an ANOVA. Here are the main ones:
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ANOVA is fairly robust and tends to work well even when 
normality and homogeneity of variance (homoscedasticity) 
are violated.

•The samples are independent of one another.

•The samples come from populations that are normally
distributed.

•The samples come from populations that have the same
variance.



The one exception is when both sample variances and
sample sizes are unequal.

•The samples are independent of one another.

•The samples come from populations that are normally
distributed.

•The samples come from populations that have the same
variance.



In this situation, it may be better to simply do an analysis
using a graph of sample means with appropriate error bars.
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