PRACTICE - SUBGROUPS

1. The group of symmetries of the equalateral triangle, S_3 , has six subgroups, one of which is the trivial subgroup $\{e\}$ and another is the whole group itself. Use the multiplication table below to find the remaining four subgroups.

	(1)(2)(3)	$\begin{pmatrix} 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 \end{pmatrix}$	(2 3)	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$
$\overline{(1)(2)(3)}$	(1)(2)(3)	(1 2)	(1 3)	(2 3)	(1 2 3)	$\begin{array}{c ccc} \hline (1 & 3 & 2) \\ \hline \end{array}$
$\begin{pmatrix} 1 & 2 \end{pmatrix}$	(1 2)	(1)(2)(3)	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 \end{pmatrix}$	(2 3)
$\begin{pmatrix} 1 & 3 \end{pmatrix}$	(1 3)	$\begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$	(1)(2)(3)	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	(2 3)	$\begin{pmatrix} 1 & 2 \end{pmatrix}$
(2 3)	(2 3)	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$	(1)(2)(3)	$\begin{pmatrix} 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 \end{pmatrix}$
$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	(2 3)	$\begin{pmatrix} 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$	(1)(2)(3)
$\begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$	(1 3 2)	$\begin{pmatrix} 1 & 3 \end{pmatrix}$	(2 3)	$\begin{pmatrix} 1 & 2 \end{pmatrix}$	(1)(2)(3)	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$

- 2. For each subgroup of order 2 or 3 in S_3 , find the left coset created by multiplying the subgroup on the left by the permutation $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$.
- 3. Prove: S_3 has no subgroup of order 5.
- 4. Prove: For any group G, $\{e\}$ is a normal subgroup.