PRACTICE - SUBGROUPS - ANSWERS

1. The group of symmetries of the equalateral triangle, S_3 , has six subgroups, one of which is the trivial subgroup $\{e\}$ and another is the whole group itself. Use the multiplication table below to find the remaining four subgroups.

	(1)(2)(3)	$\begin{pmatrix} 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 \end{pmatrix}$	(2 3)	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	(1 3 2)
$\overline{(1)(2)(3)}$	(1)(2)(3)	(1 2)	(1 3)	(2 3)	(1 2 3)	
$\begin{pmatrix} 1 & 2 \end{pmatrix}$	(1 2)	(1)(2)(3)	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 \end{pmatrix}$	(2 3)
$\begin{pmatrix} 1 & 3 \end{pmatrix}$	(1 3)	$\begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$	(1)(2)(3)	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	(2 3)	$\begin{pmatrix} 1 & 2 \end{pmatrix}$
(2 3)	(2 3)	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$	(1)(2)(3)	$\begin{pmatrix} 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 \end{pmatrix}$
$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	(1 2 3)	(2 3)	$\begin{pmatrix} 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$	(1)(2)(3)
$\begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$	(1 3 2)	$\begin{pmatrix} 1 & 3 \end{pmatrix}$	(2 3)	$\begin{pmatrix} 1 & 2 \end{pmatrix}$	(1)(2)(3)	(1 2 3)

The remaining subgroups are $\{(1)(2)(3)\}$, $\{(1)(2)(3)\}$, $\{(1)(2)(3)\}$, and $\{(1)(2)(3)\}$, and $\{(1)(2)(3)\}$.

2. For each subgroup of order 2 or 3 in S_3 , find the left coset created by multiplying the subgroup on the left by the permutation $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$.

$$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{cases} (1)(2)(3) \\ (1 & 2) \end{pmatrix} = \begin{cases} (1 & 2 & 3) \\ (2 & 3) \end{cases}$$

$$(1 \quad 2 \quad 3) \begin{cases} (1)(2)(3) \\ (1 \quad 3) \end{cases} = \begin{cases} (1 \quad 2 \quad 3) \\ (1 \quad 2) \end{cases}$$

$$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{cases} (1)(2)(3) \\ (2 & 3) \end{pmatrix} = \begin{cases} (1 & 2 & 3) \\ (1 & 3) \end{cases}$$

$$\begin{pmatrix}
1 & 2 & 3
\end{pmatrix}
\begin{cases}
(1)(2)(3) \\
(1 & 2 & 3) \\
(1 & 3 & 2)
\end{pmatrix}
=
\begin{cases}
(1 & 2 & 3) \\
(1 & 3 & 2) \\
e
\end{cases}$$

3. Prove: S_3 has no subgroup of order 5.

<u>Proof:</u> The order of S_3 is $|S_3| = 3! = 3 \cdot 2 \cdot 1 = 6$, and 5 is not a divisor of 6. Hence, by Lagrange's Theorem, S_3 cannot have a subgroup of order 5. $\{e\}\Box$

4. Prove: For any group G, $\{e\}$ is a normal subgroup.

<u>Proof:</u> Let G be a group and let $a \in G$. Then $aea^{-1} = aa^{-1} = e \in \{e\}$. Therefore, $\{e\}$ is a normal subgroup of G, $\{e\} \triangleleft G$. \square