PRACTICE - SUBGROUPS — ANSWERS

1. The group of symmetries of the equalateral triangle, S, has six subgroups, one of
which is the trivial subgroup {e} and another is the whole group itself. Use the
multiplication table below to find the remaining four subgroups.
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The remaining subgroups are {(1)(2)(3)}, {(1)(2)(3)} {(1)2(2)(3)} , and {(l 2 3)}
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2. For each subgroup of order 2 or 3 in S;, find the left coset created by multiplying the
subgroup on the left by the permutation (1 2 3).
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(1)(2)(3)} _ {(1(1 : 2)3)}

3. Prove: S, has no subgroup of order 5.
Proof: The order of S, is |S;|=3!=3-2-1=6, and 5 is not a divisor of 6. Hence, by
Lagrange’s Theorem, S, cannot have a subgroup of order 5. {e}o

4. Prove: Forany group G, {e} is a normal subgroup.

Proof: Let G beagroupandlet acG. Then aea™ =aa " =ee{e}. Therefore, {e} is
anormal subgroup of G, {e}<G. o



