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INTRODUCTION 

 

I once had a very bright student named Amie who did so well in her community college 

courses on calculus and differential equations that she decided to major in mathematics 

when she transferred to a senior university.  However, I immediately knew that she would 

face a problem.  Namely, the fact that upper level college courses in mathematics are 

often very different from the courses you encounter at the freshman and sophomore 

levels.  Once you reach the junior and senior levels, mathematics becomes much more 

abstract, a discipline in its own right rather than a tool that must always have an 

application somewhere else, and there is an increased emphasis on being able to prove 

theorems.  Thus, I decided the best thing I could do for her was to put together a short 

introduction to theorem proving, and I knew from experience that even a little familiarity 

with material on theorem proving can make her transition to higher level mathematics a 

lot easier.  And so I put together for her this brief series of lessons to serve as an 

introduction to more advanced mathematics, and I tried to craft the lessons so that she 

could take them and explore, to a great degree, on her own.  There are certainly many 

important topics that I have completely left out of this material such as topology and 

linear algebra, but then again, an introduction can only do so much, and after that each 

person must define their own journey.  Thus, for anyone who comes across these lessons, 

spend a little time with each one, ponder and explore on your own, and enjoy what 

insights you acquire! 



Lesson 1 
 

Symbolic Logic 
 
 

This lesson is an introduction to symbolic logic and what we actually mean in 

mathematics by statements such as “a implies b” and “a if and only if b.”  Below are 

some common symbols that are used in logic followed by the corresponding math 

symbols that I will use instead. 

LOGIC MATH 

~ or ¬  not 

∨  or 

∧  and 

a b→  a b⇒  

a b↔  a b⇔  

 

The statement “ a b⇒ ” can be read as “a implies b” or “if a then b” or “a is a sufficient 

condition for b” or “b is a necessary condition for a.”   

 

The statement “ a b⇔ ” can be read or written as “a iff b” or “a if and only if b” or “a is 

a necessary and sufficient condition for b.”  

 



Using the logical connectives above, we can rewrite “ a b⇒ ” as “ not (  & not- )a b .”  

Similarly, since “ a b⇔ ” means “ a b⇒  & b a⇒ ,” we can rewrite “ a b⇔ ” as 

“[ not (  & not- )a b ] & [ not (  & not- )b a ].” 

 

In mathematics, for a compound statement “A & B” to be true, both of the statements A 

and B must be true.  On the other hand, for the compound statement “A or B” to be true, 

only one of the statements must be true.  Construct some simple examples to convince 

yourself that this is the correct way to proceed.  Also, in mathematics, unless stated 

otherwise, we always use an inclusive or.  That means that for “A or B” to be true, we 

either have A true or B true or both A and B true.  In an exclusive or, either A or B can be 

true, but not both at the same time. 

 

Now, here are some things for you to either do or look up and respond to. 

1. What is a truth table? 

 

2. What is the law of the excluded middle? 

 

3. What is a tautology? 

 

4. What is a contradiction? 

 

5. Complete the following truth tables.  Your final values should be in the column 

shaded yellow. 



Not A 

 T 

 F 

 

A & B 

   

   

   

   

 

A or B 

   

   

   

   

 

Not [ A & ( Not B ) ] 

     

     

     

     

 



 

{ Not [ A & ( Not B ) ] } & { Not [ B & ( Not A ) ] }

           

           

           

           

 

6. What is modus ponens?  Give an example. 

 

7. What is modus tollens”  Give an example. 

 

8. Explain why a false statement can imply anything?  In other words, why is a 

statement such as “If the moon is made of green cheese, then I am the smartest man 

on the planet” considered to be true? 

 

9. Use truth tables to show that “ not (  & not- )a b ” and “not-a or b” are logically 

equivalent.  In this context, logical equivalence means that if a and b are assigned the 

same truth values, then the truth values of our final compound statements are the 

same. 

 

10. Consider the statement “This sentence is false.”  What are the implications of this 

statement being true?  What are the implications of it being false?  Read 

http://en.wikipedia.org/wiki/Paradox.  



11. What is the inverse of ?a b⇒  

What is the converse of ?a b⇒  

What is the contrapositive of ?a b⇒  

Use truth tables to show that a b⇒  is logically equivalent to ~ ~b a⇒  (not-b implies 

not-a). 



Lesson 1 – Answers 
 

Symbolic Logic 
 
 

This lesson is an introduction to symbolic logic and what we actually mean in 

mathematics by statements such as “a implies b” and “a if and only if b.”  Below are 

some common symbols that are used in logic followed by the corresponding math 

symbols that I will use instead. 

LOGIC MATH 

~ or ¬  not 

∨  or 

∧  and 

a b→  a b⇒  

a b↔  a b⇔  

 

The statement “ a b⇒ ” can be read as “a implies b” or “if a then b” or “a is a sufficient 

condition for b” or “b is a necessary condition for a.”   

 

The statement “ a b⇔ ” can be read or written as “a iff b” or “a if and only if b” or “a is 

a necessary and sufficient condition for b.”  

 



Using the logical connectives above, we can rewrite “ a b⇒ ” as “ not (  & not- )a b .”  

Similarly, since “ a b⇔ ” means “ a b⇒  & b a⇒ ,” we can rewrite “ a b⇔ ” as 

“[ not (  & not- )a b ] & [ not (  & not- )b a ].” 

 

In mathematics, for a compound statement “A & B” to be true, both of the statements A 

and B must be true.  On the other hand, for the compound statement “A or B” to be true, 

only one of the statements must be true.  Construct some simple examples to convince 

yourself that this is the correct way to proceed.  Also, in mathematics, unless stated 

otherwise, we always use an inclusive or.  That means that for “A or B” to be true, we 

either have A true or B true or both A and B true.  In an exclusive or, either A or B can be 

true, but not both at the same time. 

 

Now, here are some things for you to either do or look up and respond to. 

1. What is a truth table? 

 

A truth table is a 2-dimensional array that indicates the final truth value (true or false) 

of a statement based upon the truth values assigned to its component propositions. 

 

See http://mathworld.wolfram.com/TruthTable.html 

 

 

2. What is the law of the excluded middle? 

 



The Law of the Excluded Middle assumes that for any proposition P either it or its 

negation is true and that there are no other possibilities.  In other words, A or not-A. 

A proposition is assumed to be either true or false. 

 

See http://mathworld.wolfram.com/LawoftheExcludedMiddle.html 

 

 

3. What is a tautology? 

 

A tautology is a statement that is always true regardless of whether its component 

propositions  are true or false.  Hence, in a truth table, the final truth value will 

always be “true.”  For example, consider the statement, “I will study math or I won’t 

study math.”   

 

See http://mathworld.wolfram.com/Tautology.html 

 

 

4. What is a contradiction? 

 

A contradiction is a statement of the form (P & not-P).  If we have an argument that 

implies both P and not-P, then the argument has led to a contradiction.  Alternatively, 

in a truth table, the final truth value will always be “false.” 

 



See http://mathworld.wolfram.com/Contradiction.html 

 

 

5. Complete the following truth tables.  Your final values should be in the column 

shaded yellow. 

Not A 

F T 

T F 

 



 

A & B 

T T T 

T F F 

F F T 

F F F 

 

A or B 

T T T 

T T F 

F T T 

F F F 

 

Not [ A & ( Not B ) ] 

T T F F T 

F T T T F 

T F F F T 

T F F T F 

 



 

{ Not [ A & ( Not B ) ] } & { Not [ B & ( Not A ) ] }

T T F F T T T T F F T 

F T T T F F T F F F T 

T F F F T F F T T T F 

T F F T F T T F F T F 

 

6. What is modus ponens?  Give an example. 

 

Modus ponens is a form of argument that essential says that if F implies G (i.e. 

F G⇒ ) and if F is true, then G is true.  The steps are, 

(1)  F G⇒   

(2)  F 

(3)  Therefore, G. 

 

Example:   

If someone is a man, then they are mortal.  

Socrates is a man. 

Therefore, Socrates is mortal. 

 

7. What is modus tollens”  Give an example. 

 

Modus tollens is a form of argument that essential says that if F implies G (i.e. 



F G⇒ ) and if G is false, then F is false.  The steps are, 

(1) F G⇒  

(2)  not G 

(3)  Therefore, not F. 

 

Example:   

If I am at home, then I will study math. 

I am not studying math. 

Therefore, I am not at home. 

 

8. The statement A B⇒  means “ not ( & not )A B .”  Use a truth table to explain why a 

false statement can imply anything?  In other words, why is a statement such as “If 

the moon is made of green cheese, then I am the smartest man on the planet” 

considered to be true? 

 

Below is the truth table for A B⇒  (i.e. not ( & not )A B ).  From this table we can see 

that if A is false, then the final truth value of the statement is always “true.”  The 

implication is false only if A is true while B is false.  Hence, a false statement can 

imply anything. 

 

 

 

 



Not [ A & ( Not B ) ] 

T T F F T 

F T T T F 

T F F F T 

T F F T F 

 

 

9. Use truth tables to show that “ not (  & not- )a b ” and “not-a or b” are logically 

equivalent.  In this context, logical equivalence means that if a and b are assigned the 

same truth values, then the truth values of our final compound statements are the 

same. 

 

We have previously completed the truth table for “ not (  & not- )a b .” 

 

Not [ A & ( Not B ) ] 

T T F F T 

F T T T F 

T F F F T 

T F F T F 

 

We just need to complete the corresponding truth table for “not-a or b.” 

 



(Not A) or B 

F T T T 

F T F F 

T F T T 

T F T F 

 

From the results we can see that the same true/false assignments made to A and B 

result in the same final truth value for both “ not (  & not- )a b ” and “not-a or b.”  

Therefore, there are logically equivalent. 

 

10. Consider the statement “This sentence is false.”  What are the implications of this 

statement being true?  What are the implications of it being false?  Read 

http://en.wikipedia.org/wiki/Paradox.  

 

In general, we often think of a paradox as something that is simply unusual or 

unexpected, but in particular, we tend to think of a mathematical paradox as a 

statement that implies its negation such as not-A A⇔ .  This is the type of paradox 

we have above.  If the sentence is true, then by definition, it is false, and if the 

sentence is false, then it must be true.  Paradox!  In many respects, I think of 

paradoxes as important because they reveal to us what may be either flaws or 

unexpected consequences of our logic.  Sometimes they also seem to reveal the 

limitations of logical discourse.  Furthermore, their presence suggests that sometimes 



something will exist other than just “true” or “false.” 

 

11. What is the inverse of ?a b⇒  

The inverse of a b⇒  is not- not-a b⇒ . 

 

What is the converse of ?a b⇒  

The converse of a b⇒  is b a⇒ . 

 

What is the contrapositive of ?a b⇒  

The contrapositive of a b⇒  is not- not-b a⇒ . 

 

Use truth tables to show that a b⇒  is logically equivalent to not- not-b a⇒ . 

 

As stated previously, a b⇒  means “ not (  & not- )a b ,” and the truth table for this 

statement is below. 

 

Not [ A & ( Not B ) ] 

T T F F T 

F T T T F 

T F F F T 

T F F T F 

 



Similarly, not- not-b a⇒  means “ not (not-  & not-not- )b a ” which we can simplify to 

“ not (not-  & )b a .”  The truth table for this statement is below 

 

Not [( not B) & A] 

T F T F T 

F T F T T 

T F T F F 

T T F F F 

 

From the above tables we can see that when A and B are given the same truth values 

in each table, then the truth values of the resulting statements are identical.  Therefore, 

a b⇒  is logically equivalent to not- not-b a⇒ . 



Lesson 2 
 

Set Theory 
 

In general, a mathematical proof is a convincing argument conforming to standard rules 

of logic that begins with a premise and ends with a conclusion.  In the good ol’ days 

(back in the seventies when I was young) there was a tendency to use as much 

mathematical shorthand notation as possible.  In particular, two symbols from logic 

known, respectively, as the universal quantifier ( ∀ , for every …) and the existential 

quantifier ( ∃ , there exists …) were frequently employed as well as the symbol ∴ for 

therefore.  These days, however, there is a greater tendency to write proofs in plain 

English and to use the shorthand symbols a little more sparingly. 

 

When you write a proof, think in terms of trying to write a convincing argument that a 

colleague could easily understand.  This also means that when professional research 

mathematicians are writing proofs to be read by other researchers, they can be very brief 

in their arguments.  On the other hand, when one is writing a proof for someone with less 

training in formal mathematics, a little more verbosity is often needed in order to make 

the argument convincing. 

 

Each branch of mathematics tends to have its own style and technique of doing proofs.  

In particular, in set theory if one is trying to show that for two sets A and B that A B= , 

then one generally utilizes the following: “THEOREM:  If A and B are sets such that 



A B⊆  and B A⊆ , then A B= .”  Hence, proofs involving the equality of two sets A and B 

generally take the following form: 

 

PROOF:  Let x A∈ . … Thus, x B∈  and, hence, A B⊆ .  Now let x B∈ .  … Thus, 

x A∈  and, hence, B A⊆ .  Therefore, A B= .   

 

(NOTE:  Mathematicians used to end their proofs with the letters QED which 

stands for quod erat demonstandum, which means that which was to be 

demonstrated.  However, a twentieth century mathematician named Paul Halmos 

felt it was a little presumptuous to always assume that one’s proof was correct, 

and he introduced the practice of using a square (usually shaded) to indicate the 

end of a proof.) 

 

Before we continue, here are a few basic definitions regarding set notation. 

∈ - is an element of 

U  - The universal set.  Whatever our universe of discourse is, i.e. real numbers, 

complex numbers, etc. 

∅  - The null or empty set.  The set containing no elements. 

{ |  or }A B x U x A x B= ∈ ∈ ∈∪      (This is read as “A union B.”) 

{ |  and }A B x U x A x B= ∈ ∈ ∈∩      (This is read as “A intersect B.”) 

{ | }A x U x A′ = ∈ ∉      (This is read as “A-complement.”) 

 if and only if , A B x A x B⊆ ∀ ∈ ∈   (This is read as “A is a subset of B.”) 



 if and only if , A B x A x B⊂ ∀ ∈ ∈  and y B∃ ∈  such that y A∉   (This is read as “A is 

a proper subset of B.”) 

The cardinality of a set A is the number of elements in A, and this is denoted by 

A .  For example, if { }, ,A a b c= , then 3A = .  Also, 0∅ = . 

 

1. Prove De Morgan’s Laws. 

a. PROVE:  ( )A B A B′ ′ ′=∪ ∩ . 

b. PROVE:  ( )A B A B′ ′ ′=∩ ∪  

 

2. PROVE:  ( ) ( ) ( )A B C A C B C=∪ ∩ ∩ ∪ ∩  

 

3. Explain why the null set is a subset of every set. 

 

4. List the subsets of the following sets: ,{ },{ }.{ , },{ , , }a a b a b c∅ ∅ .  Do you see a pattern 

with respect to the number of subsets? 

 

5. Who was Georg Cantor?  How did he live?  How did he die? 

 

6. Explain Russell’s Paradox.  What does it tell us about set theory?  How do 

mathematicians “weasel out” of this paradox? 

 



Lesson 2 – Answers 
 

Set Theory 
 

In general, a mathematical proof is a convincing argument conforming to standard rules 

of logic that begins with a premise and ends with a conclusion.  In the good ol’ days 

(back in the seventies when I was young) there was a tendency to use as much 

mathematical shorthand notation as possible.  In particular, two symbols from logic 

known, respectively, as the universal quantifier ( ∀ , for every …) and the existential 

quantifier ( ∃ , there exists …) were frequently employed as well as the symbol ∴ for 

therefore.  These days, however, there is a greater tendency to write proofs in plain 

English and to use the shorthand symbols a little more sparingly. 

 

When you write a proof, think in terms of trying to write a convincing argument that a 

colleague could easily understand.  This also means that when professional research 

mathematicians are writing proofs to be read by other researchers, they can be very brief 

in their arguments.  On the other hand, when one is writing a proof for someone with less 

training in formal mathematics, a little more verbosity is often needed in order to make 

the argument convincing. 

 

Each branch of mathematics tends to have its own style and technique of doing proofs.  

In particular, in set theory if one is trying to show that for two sets A and B that A B= , 

then one generally utilizes the following: “THEOREM:  If A and B are sets such that 



A B⊆  and B A⊆ , then A B= .”  Hence, proofs involving the equality of two sets A and B 

generally take the following form: 

 

PROOF:  Let x A∈ . … Thus, x B∈  and, hence, A B⊆ .  Now let x B∈ .  Thus, 

x A∈  and, hence, B A⊆ .  Therefore, A B= .   

 

(NOTE:  Mathematicians used to end their proofs with the letters QED which 

stands for quod erat demonstandum, which means that which was to be 

demonstrated.  However, a twentieth century mathematician named Paul Halmos 

felt it was a little presumptuous to always assume that one’s proof was correct, 

and he introduced the practice of using a square (usually shaded) to indicate the 

end of a proof.) 

 

Before we continue, here are a few basic definitions regarding set notation. 

∈ - is an element of 

U  - The universal set.  Whatever our universe of discourse is, i.e. real numbers, 

complex numbers, etc. 

∅  - The null or empty set.  The set containing no elements. 

{ |  or }A B x U x A x B= ∈ ∈ ∈∪      (This is read as “A union B.”) 

{ |  and }A B x U x A x B= ∈ ∈ ∈∩      (This is read as “A intersect B.”) 

{ | }A x U x A′ = ∈ ∉      (This is read as “A-complement.”) 

 if and only if , A B x A x B⊆ ∀ ∈ ∈   (This is read as “A is a subset of B.”) 



 if and only if , A B x A x B⊂ ∀ ∈ ∈  and y B∃ ∈  such that y A∉   (This is read as “A is 

a proper subset of B.”) 

The cardinality of a set A is the number of elements in A, and this is denoted by 

A .  For example, if { }, ,A a b c= , then 3A = .  Also, 0∅ = . 

 

1. Prove De Morgan’s Laws. 

a. PROVE:  ( )A B A B′ ′ ′=∪ ∩ . 

 

PROOF:  Let ( )x A B ′∈ ∪ .  Then x A∉  and x B∉  (since, otherwise, we 

would have ( )x A B∈ ∪ ).  Thus, if x A∉  and x B∉ , then x A′∈  and x B′∈  

which implies that x A B′ ′∈ ∩ .  Therefore, ( )A B A B′ ′ ′⊆∪ ∩ .  

 

Now suppose that x A B′ ′∈ ∩ .  Then x A′∈  and x B′∈  which implies that 

x A∉  and x B∉ , and, hence, x A B∉ ∪ .  Therefore, ( )x A B ′∈ ∪ , and, thus, 

( )A B A B′ ′ ′⊆∩ ∪ .  Furthermore, since ( )A B A B′ ′ ′⊆∪ ∩  and 

( )A B A B′ ′ ′⊆∩ ∪ , it now follows that ( )A B A B′ ′ ′=∪ ∩ .   

 

b. PROVE:  ( )A B A B′ ′ ′=∩ ∪  

 

PROOF:  Let ( )x A B ′∈ ∩ .  Then x A∉  or x B∉  (since, otherwise, we 

would have ( )x A B∈ ∩ ).  Thus, if x A∉  or x B∉ , then x A′∈  or x B′∈  

which implies that x A B′ ′∈ ∪ .  Therefore, ( )A B A B′ ′ ′⊆∩ ∪ .  



 

Now suppose that x A B′ ′∈ ∪ .  Then x A′∈  or x B′∈  which implies that 

x A∉  or x B∉ , and, hence, x A B∉ ∩ .  Therefore, ( )x A B ′∈ ∩ , and, thus, 

( )A B A B′ ′ ′⊆∪ ∩ .  Furthermore, since ( )A B A B′ ′ ′⊆∩ ∪  and 

( )A B A B′ ′ ′⊆∪ ∩ , it now follows that ( )A B A B′ ′ ′=∩ ∪ .   

 

2. PROVE:  ( ) ( ) ( )A B C A C B C=∪ ∩ ∩ ∪ ∩  

 

PROOF:   Suppose ( )x A B C∈ ∪ ∩ .  Then x A B∈ ∪  and x C∈ .  However, if 

x A B∈ ∪ , then x A∈  or x B∈ .  If x A∈ , then x A C∈ ∩ , and if x B∈ , then x B C∈ ∩ .  

Thus, one way or another, we have that ( ) ( )x A C B C∈ ∩ ∪ ∩  and, hence, 

( ) ( ) ( )A B C A C B C⊆∪ ∩ ∩ ∪ ∩ .   

 

Now suppose that ( ) ( )x A C B C∈ ∩ ∪ ∩ .  Then x A C∈ ∩  or x B C∈ ∩ , and, hence, it 

follows that x C∈ .  It also follows that x A∈  or x B∈ , and thus, x A B∈ ∪ .  

Consequently, ( )x A B C∈ ∪ ∩ , and, hence, ( ) ( ) ( )A C B C A B C⊆∩ ∪ ∩ ∪ ∩ . 

 

( ) ( ) ( )A B C A C B C∴ =∪ ∩ ∩ ∪ ∩ .  

 

3. Explain why the null set is a subset of every set. 

 

By definition, the null set is the set containing no objects.  Also, A B⊆  means that if 



x A∈ , then x B∈ .  If we replace A by ∅ , then we can rewrite this condition as 

B∅⊆  means that if x∈∅  then x B∈  (or in other words, x x B∈∅⇒ ∈ ).  However, 

the statement x∈∅  is always false, and recall that a false statement can imply 

anything.  Hence, it is true that x x B∈∅⇒ ∈ , and, therefore, B∅⊆  for any set B. 

 

4. List the subsets of the following sets: ,{ },{ , },{ , , }a a b a b c∅ .  Do you see a pattern with 

respect to the number of subsets? 

 

We’ll denote the set of all subset of a set A by ( )P A .  Consequently,  

{ }( )P ∅ = ∅  

{ } { }{ }( ) ,P a a= ∅  

{ } { } { } { }{ }( , ) , , , ,P a b a b a b= ∅  

{ } { } { } { } { } { } { } { }{ }( , , ) , , , , , , , , , , , ,P a b c a b c a b a c b c a b c= ∅  

 

If we now denote the number of elements in a set A by A , then 

0( ) 2 1P ∅ = =  

{ } 1( ) 2 2P a = =  

{ } 2( , ) 2 4P a b = =  

{ } 3( , , ) 2 8P a b c = =  

 



These results correctly suggest that if a finite set A has n elements, then ( ) 2nP A = . 

 

5. Who was Georg Cantor?  How did he live?  How did he die? 

 

George Cantor was born in 1845 and died in 1918, and he is best remembered as the 

creator of set theory.  While today we consider set theory to be the foundation for all 

of mathematics, in his day Cantor and his work were the subject of several vicious 

attacks from not only his former teacher, Leopold Kronecker, but also other leading 

mathematicians of the day.  This is because Cantor’s work included the existence of 

infinities of different sizes as well as various other items that had not been a part of 

mathematics up to that point.  For example, prior to Cantor, infinity was a subject to 

be eschewed in mathematics as is evidenced by the following quote from 

mathematician Carl Friedrich Gauss: 

 

“I protest against the use of infinite magnitude as something completed, which is 

never permissible in mathematics. Infinity is merely a way of speaking, the true 

meaning being a limit which certain ratios approach indefinitely close, while others 

are permitted to increase without restriction.” 

 

Because his ideas were so radical at the time, his former professor, Kronecker, 

actively worked to block the publication of his papers and appointments to more 

prestigious institutions.  These attacks on Cantor appear to have eventually taken their 

toll, and Cantor suffered his first hospitalization for chronic depression in 1884.  He 



was to be hospitalized many more times in his life for this mental disorder including 

the last year of his life which he spent in a sanatorium in Halle, Germany.  In spite of 

the opposition generated during Cantor’s lifetime, his theories eventually gained wide 

acceptance throughout mathematics, and in the first half of the twentieth century, the 

great mathematician David Hilbert declared, “No one shall expel us from the Paradise 

that Cantor has created.” 

 

 

6. Explain Russell’s Paradox.  What does it tell us about set theory?  How do 

mathematicians “weasel out” of this paradox? 

 

At its beginning, the word set seemed to be just another word for collection, and 

surely we can talk about the collection of anything we wish.  Or so it seemed.  This 

point of view that we naturally understand what a set is without needing any formal 

axiomatic structure is now referred to as naive set theory, and its limitations were 

discovered in 1901 when Bertrand Russell formulated what we now call Russell’s 

Paradox.  The heart of the paradox is that, intuitively, a set R can either be a member 

or element of itself or, alternatively, not an element of itself.  Most of time we 

experience the latter.  For example, if { }1,2A = , then 1 A∈  and 2 A∈ , but A A∉  (even 

though A A⊆ ).  However, on the other hand, if I say, “Let A be the set of all sets that 

I can describe with a finite number of words,” then it seems like I have described the 

set A itself with a finite number of words, and, hence, A A∈ .  In this spirit, Bertrand 

Russell asked us to consider the set R defined as the set of all sets that do not contain 



themselves as members.  In other words, { }|R A A A= ∉ .  We now ask ourselves the 

question, “Is R R∈ ?”  If R R∈ , then by definition, R R∉ , and if R R∉ , then again, by 

definition, R R∈ .  Thus, we arrive at the following paradox, R R R R∈ ⇔ ∉ .   

 

Russell’s Paradox showed us that, if we wanted to avoid contradictions, we had to be 

much more careful about what we did and what we didn’t call a set.  The ultimate 

result, for most mathematicians, was the creation of an axiomatic version of set 

theory known as Zermelo-Frankel.  This version of set theory allows infinite sets of 

all sorts to exist, but, at the same time, it doesn’t allow us to talk about things that are 

so large or so self-referential that they lead us into paradoxes.  Furthermore, in this 

axiomatic formulation, the term set is left undefined, and those collections that we 

don’t believe as deserving to be called sets within the framework of Zermelo-Frankel 

we simply label as classes.  Thus, the collection R defined above is simply referred to 

as a class instead of a set, and the paradox is avoided.  Nonetheless, in my opinion, 

we haven’t really resolved the paradox.  We’ve simply decided to ignore an 

inconvenient truth and, instead, sweep it under the rug.  Furthermore, we should note 

that paradoxes, in general, are quite interesting because they show us where our 

logical framework for reality tends to break down.  More paradoxes to come! 

 



Lesson 3 
 

Set Theory Continued 
 

In set theory, the size or number of elements in a set is called its cardinality.  There are 

various symbols that are used for cardinality, but my favorite is to simply enclose the set 

inside a pair of absolute value signs.  Thus, if { , , }A a b c= , then 3A =  since the set has 

three elements.  We can show that two sets have the same cardinality by finding a 

function that establishes a one-to-one correspondence between the elements of the sets.  

A function :f A B→  is one-to-one if , ,  ( ) ( )x y A x y f x f y∀ ∈ ≠ ⇒ ≠ .  We also call a one-

to-one function an injection or injective function.  A function :f A B→  is onto if 

,   such that ( )y B x A f x y∀ ∈ ∃ ∈ = .  We also call an onto function a surjection or surjective 

function.  We can now define a one-to-one correspondence between two sets A and B as a 

function :f A B→  that is both one-to-one and onto.  We also call a one-to-one and onto 

function a bijection or bijective function. 

 

When we are dealing with cardinality or size of sets, everything behaves as we expect 

when the sets are finite.  However, if our sets are infinite, then strange things can happen.  

For example, one set can be a proper subset of another, and yet the two sets can be the 

same size ( &A B A B⊂ = ).  Additionally, some infinite sets can have more elements in 

them than other infinite sets (As you’ll prove below, if counting or natural numbers=  

and  real numbers= , then < .).  Note that if there is an injective function :f A B→ , 

but no surjective function :f A B→ , then we’ll say that A B< . 



1. If a set A has the same cardinality as the natural numbers {1,2,3, }= … , then we say 

that A is countable.  Prove that the set of even natural numbers, 2 {2,4,6, }= … , is 

countable by finding a bijective function : 2f → .  Conclude that there are just as 

many even natural numbers as natural numbers. 

 

2. Prove that there are just as many numbers in the interval (0,1)  as there are real 

numbers by finding a bijective function : (0,1)f → .  (HINT:  You can find a 

bijection by modifying a well-known trigonometric function.) 

 

3. Study Cantor’s Diagonal Theorem and use the argument to prove that there is no 

bijection ( ): 0,1f → . 

 

4. Cantor’s Diagonal Theorem is an example of proof by contradiction.  In other words, 

we make an assumption, prove that that assumption leads to a contradiction, and then 

we conclude the opposite of our assumption.  However, some mathematicians don’t 

like proofs done by this method.  Review the concepts introduced in Lesson 1, and 

explain why some people don’t like this method. 

 

5. Conclude from 2 & 3 above that < . 

 

 



Lesson 3 – Answers 
 

Set Theory Continued 
 

In set theory, the size or number of elements in a set is called its cardinality.  There are 

various symbols that are used for cardinality, but my favorite is to simply enclose the set 

inside a pair of absolute value signs.  Thus, if { , , }A a b c= , then 3A =  since the set has 

three elements.  We can show that two sets have the same cardinality by finding a 

function that establishes a one-to-one correspondence between the elements of the sets.  

A function :f A B→  is one-to-one if , ,  ( ) ( )x y A x y f x f y∀ ∈ ≠ ⇒ ≠ .  We also call a one-

to-one function an injection or injective function.  A function :f A B→  is onto if 

,   such that ( )y B x A f x y∀ ∈ ∃ ∈ = .  We also call an onto function a surjection or surjective 

function.  We can now define a one-to-one correspondence between two sets A and B as a 

function :f A B→  that is both one-to-one and onto.  We also call a one-to-one and onto 

function a bijection or bijective function. 

 

When we are dealing with cardinality or size of sets, everything behaves as we expect 

when the sets are finite.  However, if our sets are infinite, then strange things can happen.  

For example, one set can be a proper subset of another, and yet the two sets can be the 

same size ( &A B A B⊂ = ).  Additionally, some infinite sets can have more elements in 

them than other infinite sets (As you’ll prove below, if counting or natural numbers=  

and  real numbers= , then < .).  Note that if there is an injective function :f A B→ , 

but no surjective function :f A B→ , then we’ll say that A B< . 



1. If a set A has the same cardinality as the natural numbers {1,2,3, }= … , then we say 

that A is countable.  Prove that the set of even natural numbers, 2 {2,4,6, }= … , is 

countable by finding a bijective function : 2f → .  Conclude that there are just as 

many even natural numbers as natural numbers. 

 

Proof:  Define : 2f →  by ( ) 2f x x= .  Then clearly : 2f →  is one-to-one since 

1 2 1 22 2x x x x≠ ⇒ ≠ .  Also, : 2f →  is onto since if 2y∈ , then y is even which 

means that 2y ∈ , and, hence, ( 2) 2 2f y y y= ⋅ = .  Therefore, : 2f →  is a 

bijection, and 2= .   

 

2. Prove that there are just as many numbers in the interval (0,1)  as there are real 

numbers by finding a bijective function : (0,1)f → .  (HINT:  You can find a 

bijection by modifying a well-known trigonometric function.) 

 

Proof:  Clearly, : ( 2, 2)g π π− →  defined by ( ) tang x x=  is a bijection.  Thus, all 

we need to do is transform this function into a related function with domain ( )0,1 .  If 

we replace tan x  by tan xπ , then this will shift our interval ( 2, 2)π π−  to ( 1 2,1 2)− .  

Next, if we replace x by 1 2x − , then that will shift ( 1 2,1 2)−  to (0,1) .  Thus, 

: (0,1)f →  defined by ( ) tan ( 1 2)f x xπ= −  is a bijective function from (0,1)  to .  

Therefore, (0,1) = .   

 



3. Study Cantor’s Diagonal Theorem and use the argument to prove that there is no 

bijection ( ): 0,1f → . 

 

Prove:  There is no bijection ( ): 0,1f → . 

 

Proof:  By way of contradiction, suppose ( ): 0,1f →  is a bijective function.  Then 

the correspondence between elements of  and elements of ( )0,1  could be written as 

a list like the following. 

 

1 0.1451939
2 0.5876624
3 0.9942146
4 0.3621722

→
→
→
→

…
…
…
…

 

 

Now, highlight the numbers along the diagonal from upper left on down. 

 

1 0. 451939
2 0.5 76624
3 0.99 2146

1

4 0.362 7

8

2
4

1 2

→
→
→
→

…
…
…
…

 

 

If we now generate a new number by changing each odd digit in the highlighted 

number to 2 and each even digit to 1, then our new number will belong to the interval 

( )0,1 , but our function will have no natural number assigned to it since the nth digit 



of the decimal expansion will always differ from that of the number in our list that 

has been assigned to the natural number n.  In other words, using the list above we 

can begin to generate the number 0.2112… .  This number, however, doesn’t 

correspond to 1 because the first digit is different from what’s in our list.  Similarly, it 

doesn’t correspond to 2, since the second digit is different from what’s in our list, and 

so on and so on.  Thus, given any table or list for our function, we can always 

construct a real number in the interval ( )0,1  that has no natural number assigned to it.  

Therefore, there is no bijection ( ): 0,1f → .   

 

4. Cantor’s Diagonal Theorem is an example of proof by contradiction.  In other words, 

we make an assumption, prove that that assumption leads to a contradiction, and then 

we conclude the opposite of our assumption.  However, some mathematicians don’t 

like proofs done by this method.  Review the concepts introduced in Lesson 1, and 

explain why some people don’t like this method. 

 

When we do a proof by contradiction, we are assuming that either A is true or not-A is 

true.  In other words, we are assuming the Law of the Excluded Middle, and this 

makes some mathematicians uneasy.  Hence, direct proofs that do not require this 

assumption are generally considered superior to proofs by contradiction. 

 

5. Conclude from 2 & 3 above that < . 

 



From 3 above, we know that (0,1)< , and from 2 above we know that (0,1) = .  

Therefore, < . 

 

 



Lesson 4 
 

Mathematical Induction 
 

Mathematical induction is a standard proof technique for showing that some proposition 

P about natural numbers holds true for all n∈ . 

 

Mathematical Induction:  If P is a proposition about natural numbers n∈ , then P is true 

for all n∈  if, 

1. P is true for 1n = , and 

2. P true for n∈ ⇒  P is true for 1n + ∈ . 

 

There are several variations we could do of this basic principle.  For example, if we 

began by showing that P is true for 0n = , then we could possibly prove that P is true for 

all whole numbers.  Similarly, if we started our argument by showing that P is true for 

10n = , then a successful induction argument could show that P is true for all natural 

numbers greater than or equal to 10.  Another variant form of mathematical induction is 

shown below. 

 

The Second Principle of Mathematical Induction:  If P is a proposition about natural 

numbers n∈ , then P is true for all n∈  if, 

3. P is true for 1n = , and 

4. P true for all natural numbers less than n∈ ⇒  P is true for n∈ . 

 



1. Use mathematical induction to prove that 
1

( 1)
2

n

k

n nk
=

+
=∑ . 

 

2. Use mathematical induction to prove that 2

1

( 1)(2 1)
6

n

k

n n nk
=

+ +
=∑ . 

 

3. Find the flaw in the following inductive argument that all horses are the same color. 

 

By way of induction, suppose that you have a set containing 1n =  horses.  Then 

clearly all the horses in that set are the same color.  Now assume that it is true that in 

any set of n horses, all the horses have the same color (our induction hypothesis).  At 

this point we want to argue that it is also true that any set of 1n + horses  will also all 

be the same color.  Thus, suppose we are given a set containing 1n +  horses.  If we 

remove one horse, then by our inductive hypothesis the remaining n horses will all be 

the same color.  Now return the horse we originally removed and remove a different 

horse.  Then once again our inductive hypothesis states that the resulting set of n 

horses all have the same color.  From this it follows that the two horses we 

successively removed have the same color, and therefore, all of the horses in our set 

of 1n +  horses have the same color.  It now follows by mathematical induction that 

for any set of n horses, n∈ , all the horses have the same color. 

 

4. If A is a set, then the set of all subsets of A, denoted by ( )P A , is called the power set 

of A.  For example, if A =∅ , then ( ) { }P A = ∅ .  If { }A a= , then ( ) { ,{ }}P A a= ∅ .  And 

if { , }A a b= , then ( ) { ,{ },{ },{ , }}P A a b a b= ∅ .  Use mathematical induction to show that 



if A n= ∈ , then ( ) 2 2 AnP A = = . 

 

5. The result from the previous problem not only shows why we call ( )P A  the power set 

of A, but also that for any finite set A, ( )P A A> .  This last result can be extended to 

infinite sets as well, and this provides a technique for constructing an infinite number 

of infinite sets of different sizes.  In other words, for any infinite set, the cardinality of 

its power set will be greater than the cardinality of the original set.  The smallest 

infinite set is represented by the set of counting or natural numbers, and we denote the 

size of this set by 0ℵ  (aleph null).  Any set of size 0ℵ  is called countable or 

countably infinite.  Larger infinite cardinal numbers are denoted by 1 2 3, ,ℵ ℵ ℵ … and 

so on.  Below is a sloppy proof of mine that for any set A, there is no bijection from A 

to ( )P A .  This shows that the two sets have different cardinalities.  However, since 

we can easily find an injective function from A to ( )P A , (for instance, if a A∈ , then 

pair a with { } ( )a P A∈ ), it immediately follows that ( )P A A>  for any set A.  Clean 

up this proof. 

 

 

Theorem:  Let A be a set and let ( )P A  be the set of all subsets of A.  Then there is no 

bijective function from A to ( )P A , and hence, ( )P A A> . 

 

Sloppy Proof:  Let A be a set and let ( )P A  be the set of all subsets of A. Since the 

result is obvious when A is empty, assume A is non-empty.  Now assume that f is a 



bijection from A to ( )P A , and let T be the set of all elements x in A such that x is not 

an element of f(x).  Since f is a bijection, there exists an element t in A such that 

( )f t T= .  Now ponder the question is t an element of T?  Bummer.  Therefore, no 

bijection exists from A to ( )P A , and thus, ( )P A A> .   

 

6. Georg Cantor contemplated the set of all sets, but his discovery of the theorem 

presented in exercise 5 led to a contradiction known as Cantor’s Paradox.  Give an 

informal discussion of why if U is the set of all sets, then we can reach both the 

conclusion that ( )P U U>  and ( )P U U≤ . 

 

 

 



Lesson 4 – Answers 
 

Mathematical Induction 
 

Mathematical induction is a standard proof technique for showing that some proposition 

P about natural numbers holds true for all n∈ . 

 

Mathematical Induction:  If P is a proposition about natural numbers n∈ , then P is true 

for all n∈  if, 

1. P is true for 1n = , and 

2. P true for n∈ ⇒  P is true for 1n + ∈ . 

 

There are several variations we could do of this basic principle.  For example, if we 

began by showing that P is true for 0n = , then we could possibly prove that P is true for 

all whole numbers.  Similarly, if we started our argument by showing that P is true for 

10n = , then a successful induction argument could show that P is true for all natural 

numbers greater than or equal to 10.  Another variant form of mathematical induction is 

shown below. 

 

The Second Principle of Mathematical Induction:  If P is a proposition about natural 

numbers n∈ , then P is true for all n∈  if, 

3. P is true for 1n = , and 

4. P true for all natural numbers less than n∈ ⇒  P is true for n∈ . 

 



1. Use mathematical induction to prove that 
1

( 1)
2

n

k

n nk
=

+
=∑ . 

 

Proof:  Let 1n = .  Then 
1

1

1(1 1) 2 1
2 2 k

k
=

+
= = =∑ .  Hence, the statement is true for 1n = .  

Assume now that the statement is true for some natural number n, and consider if it is 

true for 1n + .  Clearly, 

[ ]1

1 1

( 1) ( 1) 1( 1) ( 1) 2( 1) ( 1)( 2)1 1 .
2 2 2 2

n n

k k

n nn n n n n n nk k n n
+

= =

⎛ ⎞ + + ++ + + + + +
= + + = + + = = =⎜ ⎟
⎝ ⎠

∑ ∑
Hence, if the formula is true for n, then it is also true for 1n + .  Therefore, by 

mathematical induction, 
1

( 1)
2

n

k

n nk
=

+
=∑  for all natural numbers n.   

 

2. Use mathematical induction to prove that 2

1

( 1)(2 1)
6

n

k

n n nk
=

+ +
=∑ . 

 

Proof:  Let 1n = .  Then 
1

2

1

1(1 1)(2 1) 6 1
6 6 k

k
=

+ +
= = =∑ .  Hence, the statement is true for 

1n = .  Assume now that the statement is true for some natural number n, and consider 

if it is true for 1n + .  Clearly, 

[ ]

[ ][ ]
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∑ ∑
.  

Hence, if the formula is true for n, then it is also true for 1n + .  Therefore, by 



mathematical induction, 2

1

( 1)(2 1)
6

n

k

n n nk
=

+ +
=∑ for all natural numbers n.   

 

3. Find the flaw in the following inductive argument that all horses are the same color. 

 

By way of induction, suppose that you have a set containing 1n =  horses.  Then 

clearly all the horses in that set are the same color.  Now assume that it is true that in 

any set of n horses, all the horses have the same color (our induction hypothesis).  At 

this point we want to argue that it is also true that any set of 1n + horses  will also all 

be the same color.  Thus, suppose we are given a set containing 1n +  horses.  If we 

remove one horse, then by our inductive hypothesis the remaining n horses will all be 

the same color.  Now return the horse we originally removed and remove a different 

horse.  Then once again our inductive hypothesis states that the resulting set of n 

horses all have the same color.  From this it follows that the two horses we 

successively removed have the same color, and therefore, all of the horses in our set 

of 1n +  horses have the same color.  It now follows by mathematical induction that 

for any set of n horses, n∈ , all the horses have the same color. 

 

In the reading of the above argument, one often imagines a case where we might have, 

for example, 10 horses.  We remove one horse, and then our induction hypothesis 

says that the remaining 9 horses are all the same color.  We then replace our first 

horse, remove another horse, and again our induction hypothesis says that the 

remaining 9 horses are all the same color.  And then finally, we conclude that because 

of the overlap of the two situations that all 10 horses are the same color.  It is, indeed, 



clear that the induction argument works for the case of 10n = .  However, where the 

argument breaks down is for 2n= .  When we have 2 horses, then we can remove 

either one, but the resulting singleton sets this time have no intersection or overlap, 

and thus, we can’t conclude that the two horses have to be of the same color.  This is 

the one break in the chain of the induction argument that at first glance would appear 

to prove the assertion true for all natural numbers n. 

 

4. If A is a set, then the set of all subsets of A, denoted by ( )P A , is called the power set 

of A.  For example, if A =∅ , then ( ) { }P A = ∅ .  If { }A a= , then ( ) { ,{ }}P A a= ∅ .  And 

if { , }A a b= , then ( ) { ,{ },{ },{ , }}P A a b a b= ∅ .  Use mathematical induction to show that 

if A n= ∈ , then ( ) 2 2 AnP A = = . 

 

Proof:  Our assertion is actually true for all whole numbers since as we see above, 

0∅ =  and 0( ) { } ( ) 1 2P P∅ = ∅ ⇒ ∅ = = .  Similarly, if { }A a= , then ( ) { ,{ }}P A a= ∅  

and 1( ) 2 2P A = = .  Thus, let’s assume that for any set with cardinality n that the 

cardinality of its power set is 2n , and let’s suppose that we have a set A such that 

1 2A n= + ≥ .  Then there exists a A∈  such that if we remove a from A, then 

{ }A a n− = , and hence, by our induction hypothesis, { }( ) 2nP A a− = .  Now consider 

the structure of ( )P A .  Clearly, every set in { }( )P A a−  also belongs to ( )P A .  

Furthermore, we can divide the sets in ( )P A  into two categories, those that contain a 

and those that don’t.  A moment’s reflection should convince us that A should have 

just as many subsets that contain a as don’t.  For example, we can take any subset that 



doesn’t contain a and create one that contains a just by adding a to it.  Similarly, we 

could start with any subset containing a and delete a from this subset to obtain one 

that is lacking a.  Thus, in ( )P A  there is a one-to-one correspondence between those 

subsets that contain a and those that don’t, and from this it follows that 

{ } 1( ) 2 ( ) 2 2 2 2 An nP A P A a += ⋅ − = ⋅ = = .  Therefore, the assertion is true for all natural 

numbers, and, indeed, all whole numbers.   

 

5. The result from the previous problem not only shows why we call ( )P A  the power set 

of A, but also that for any finite set A, ( )P A A> .  This last result can be extended to 

infinite sets as well, and this provides a technique for constructing an infinite number 

of infinite sets of different sizes.  In other words, for any infinite set, the cardinality of 

its power set will be greater than the cardinality of the original set.  The smallest 

infinite set is represented by the set of counting or natural numbers, and we denote the 

size of this set by 0ℵ  (aleph null).  Any set of size 0ℵ  is called countable or 

countably infinite.  Larger infinite cardinal numbers are denoted by 1 2 3, ,ℵ ℵ ℵ …  and 

so on.  Below is a sloppy proof of mine that for any set A, there is no bijection from A 

to ( )P A .  This shows that the two sets have different cardinalities.  However, since 

we can easily find an injective function from A to ( )P A , (for instance, if a A∈ , then 

pair a with { } ( )a P A∈ ), it immediately follows that ( )P A A>  for any set A.  Clean 

up this proof. 

 

 



Theorem:  Let A be a set and let ( )P A  be the set of all subsets of A.  Then there is no 

bijective function from A to ( )P A , and hence, ( )P A A> . 

 

Sloppy Proof:  Let A be a set and let ( )P A  be the set of all subsets of A. Since the 

result is obvious when A is empty, assume A is non-empty.  Now assume that f is a 

bijection from A to ( )P A , and let T be the set of all elements x in A such that x is not 

an element of f(x).  Since f is a bijection, there exists an element t in A such that 

( )f t T= .  Now ponder the question is t an element of T?  Bummer.  Therefore, no 

bijection exists from A to ( )P A , and thus, ( )P A A> .   

 

Proof:  Let A be a set and let ( )P A  be the set of all subsets of A. Since the result is 

obvious when A is empty, assume A is non-empty.  Now assume that f is a bijection 

from A to ( )P A , and let T be the set of all elements x in A such that x is not an 

element of f(x).  Since f is a bijection, there exists an element t in A such that ( )f t T= .  

Now ponder the question is t an element of T?  If t T∈ , then since T is defined as the 

set of all elements x in A such that x is not an element of f(x), it follows that t T∉ .  

But on the other hand, if t T∉ , then it follows from the definition of T that t T∈ .  

Either way we go, we arrive at a contradiction, and the source of these contradictions 

is the assumption that we have a bijective function f from A to ( )P A .  Hence, no such 

bijection can exist, and so ( )P A A≠ .  On the other hand, the function : ( )f A P A→  

defined by { }( )f a a=  is clearly an injection, and therefore, ( )P A A> .   

 



6. Georg Cantor contemplated the set of all sets, but his discovery of the theorem 

presented in exercise 5 led to a contradiction known as Cantor’s Paradox.  Give an 

informal discussion of why if U is the set of all sets, then we can reach both the 

conclusion that ( )P U U>  and ( )P U U≤ . 

 

By the theorem proved in exercise 5, we know that ( )P U U> .  But on the other 

hand, if U is the set of all sets, then it must contain every element in ( )P U  and that 

means that there is an obvious injection from ( )P U U→ .  Hence, it must also be true 

that ( )P U U≤ . 

 

Naively, we think of a set as a collection of objects, but paradoxes such as Russell’s 

Paradox and Cantor’s Paradox show us that we have to be more careful about what 

we are allowed to call a set.  This has resulted in axiomatic versions of set theory with 

the most popular one being known as Zermelo-Frankel-Axiom of Choice or ZFC.  A 

fairly non-technical version of the axioms for set theory is given below: 

a. Two sets are identical if they have the same elements. 

b. The empty set exists. 

c. If A and B are sets, then { },A B  is a set. 

d. The union of a set of sets is a set. 

e. Infinite sets exist. 

f. A property that can be formalized in the language of the theory can be 

used to define a set. 

g. The power set of a set is a set. 



h. If a set has an element in it, then we can “choose” that element. (Axiom of 

Choice) 

i. If A is a set, then A A∉ . 

 

The above axioms help us avoid the kinds of paradoxes and conundrums that appeared 

early on in set theory by limiting what we can now call a set, and any collection that is 

not a set is now called a class.  However, don’t think that philosophical problems don’t 

remain.  After all, in a sense all we have done is to simply say that it’s forbidden to talk 

about something like “the set of all sets.”  Aside from the paradoxes that arise, we still 

haven’t adequately explained why we can’t talk about the set of everything. 

 

“Do I contradict myself? Very well, then I contradict myself, I am large, I contain 

multitudes.” 

-Walt Whitman, Leaves of Grass 

 

 



Lesson 5 
 

Epsilon-Delta Proofs 
 

Recall the epsilon-delta definition of a limit: 

 

“ lim ( )
x a

f x L
→

=  if and only if for every 0ε > , there exists a 0δ >  such that if 

0 x a δ< − < , then ( )f x L ε− < .” 

 

In a more symbolic form we write it this way: 

 

lim ( ) 0, 0 0 ( )
x a

f x L x a f x Lε δ δ ε
→

= ⇔∀ > ∃ > ∋ < − < ⇒ − < . 

 

Ponder what this means until you have a deep understanding of it. 

 

In doing a proof that involves an ε δ−  argument, the proof usually starts with the phrase 

“Let 0ε > ,” and then we have to find a suitable δ  as a function of ε .  For example, 

some proof involving a limit might begin with “Let 0ε >  and set 
5
εδ = .”  Below are a 

few proofs for you to do as exercises, most of which involve ε δ−  arguments.  I should 

probably give you an example or two at this point, but (a) I’m feeling very lazy today, 

and (b) you need to realize that you are not helpless and that you can take responsibility 

for your own learning.  Lots and lots of information is already available to you for free 

online, so give it your best shot!  ☺ 



1. Prove:  
1

lim(3 2) 5
x

x
→

+ =  

 

2. If lim ( )
x a

f x L
→

=  and c∈ , then lim ( )
x a

c f x c L
→

⋅ = ⋅ . 

 

3. A lemma is a theorem that is used to prove another theorem.  A corollary is a theorem 

which is an immediate consequence of another theorem.  Below is a lemma that is 

quite useful for proving other theorems about limits.  Prove the lemma. 

 

Lemma:  If lim ( )
x a

f x L
→

=  and lim ( )
x a

g x M
→

= , then for every 0ε > , there exists a 

common 0δ >  such that if 0 x a δ< − < , then both ( )f x L ε− <  and ( )g x M ε− < . 

 

4. Certain inequalities are useful for doing lots of proofs.  One of the most famous of 

such inequalities is the triangle inequality.  Prove the following theorem, and also 

figure out why it is called the triangle inequality. 

 

The Triangle Inequality:  If ,a b∈ , then a b a b+ ≤ + . 

 

5. Use the triangle inequality to prove the following limit theorem, 

 

Prove:  If lim ( )
x a

f x L
→

=  and lim ( )
x a

g x M
→

= , then [ ]lim ( ) ( )
x a

f x g x L M
→

+ = + . 



Lesson 5 – Answers 
 

Epsilon-Delta Proofs 
 

Recall the epsilon-delta definition of a limit: 

 

“ lim ( )
x a

f x L
→

=  if and only if for every 0ε > , there exists a 0δ >  such that if 

0 x a δ< − < , then ( )f x L ε− < .” 

 

In a more symbolic form we write it this way: 

 

lim ( ) 0, 0 0 ( )
x a

f x L x a f x Lε δ δ ε
→

= ⇔∀ > ∃ > ∋ < − < ⇒ − < . 

 

Ponder what this means until you have a deep understanding of it. 

 

In doing a proof that involves an ε δ−  argument, the proof usually starts with the phrase 

“Let 0ε > ,” and then we have to find a suitable δ  as a function of ε .  For example, 

some proof involving a limit might begin with “Let 0ε >  and set 
5
εδ = .”  Below are a 

few proofs for you to do as exercises, most of which involve ε δ−  arguments.  I should 

probably give you an example or two at this point, but (a) I’m feeling very lazy today, 

and (b) you need to realize that you are not helpless and that you can take responsibility 

for your own learning.  Lots and lots of information is already available to you for free 

online, so give it your best shot!  ☺ 



1. Prove:  
1

lim(3 2) 5
x

x
→

+ =  

 

Proof:  Let 0ε >  and let 
3
εδ = .  Then 

0 1 1 3 1 3 3 (3 2) 5
3

x x x x xεδ ε ε ε< − < ⇒ − < ⇒ − < ⇒ − < ⇒ + − < .  Therefore, 

1
lim(3 2) 5
x

x
→

+ = .   

 

2. If lim ( )
x a

f x L
→

=  and c∈ , then lim ( )
x a

c f x c L
→

⋅ = ⋅ . 

 

Proof:  Suppose lim ( )
x a

f x L
→

= .  Then for every 0ε > , there exists 0δ >  such that if 

0 x a δ< − < , then ( )f x L ε− < .  In particular, we can find a 0δ >  that corresponds 

to some  0
c
ε
>  where c∈ .  Thus, let 

c
ε  and δ  be so given.  Then 

0 ( ) ( ) ( )x a f x L c f x L c c f x c L
c c
ε εδ ε< − < ⇒ − < ⇒ ⋅ − < ⋅ ⇒ ⋅ − ⋅ < .  Therefore, 

lim ( )
x a

c f x c L
→

⋅ = ⋅ .   

 

3. A lemma is a theorem that is used to prove another theorem.  A corollary is a theorem 

which is an immediate consequence of another theorem.  Below is a lemma that is 

quite useful for proving other theorems about limits.  Prove the lemma. 

 

Lemma:  If lim ( )
x a

f x L
→

=  and lim ( )
x a

g x M
→

= , then for every 0ε > , there exists a 



common 0δ >  such that if 0 x a δ< − < , then both ( )f x L ε− <  and ( )g x M ε− < . 

 

Proof:  Let 0ε > .  Then there exists 1 0δ >  such that if 10 x a δ< − < , then 

( )f x L ε− < .  Similarly, there exists 2 0δ >  such that if 20 x a δ< − < , then 

( )g x M ε− < .  Now let δ  equal the lesser of 1δ  and 2δ .  Then 0 x a δ< − <  implies 

both ( )f x L ε− <  and ( )g x M ε− < .   

 

4. Certain inequalities are useful for doing lots of proofs.  One of the most famous of 

such inequalities is the triangle inequality.  Prove the following theorem, and also 

figure out why it is called the triangle inequality.  NOTE:  This inequality is used in a 

lot of proofs in calculus and analysis, but unlike others, it doesn’t require an epsilon-

delta argument. 

 

The Triangle Inequality:  If ,a b∈ , then a b a b+ ≤ + . 

 

Proof:  We’ll consider several separate cases. 

 

(Case 1: a and b both positive)  Suppose both , 0a b > .  Then a b a b a b+ = + = + . 

 

(Case 2: a and b both negative)  Suppose both , 0a b < .  Then 

( ) ( )a b a b a b a b+ = − + = − + − = + . 

 



(Case 3: a and b different signs with a b> )  In this case, a b a a b+ < < + . 

 

(Case 4: a and b different signs with a b< )  In this case, a b b a b+ < < + . 

 

(Case 5: 0a = )  In this case, a b b a b+ = = + . 

 

(Case 6: 0b = )  In this case, a b a a b+ = = + . 

 

Therefore, a b a b+ ≤ + .   

 

 

The proof I’ve giving above is far from the shortest proof that is available.  

Nonetheless, it is a very straightforward proof even though one of my professors used 

to refer to such straightforward, and perhaps inelegant, proofs as examples of “brute 

force and ignorance.” 

 

The triangle inequality derives its name from the observation that the length of one 

side of a triangle is always less than or equal to the sum of the lengths of the other 

two sides.  If we represent the lengths of our sides by vectors, then we just arrive at 

another version of the triangle inequality. 

 

 

 



 

 

 

 

 

 

 

 

                                                       

                                               a b a b+ ≤ +  

 

5. Use the triangle inequality to prove the following limit theorem, 

 

Prove:  If lim ( )
x a

f x L
→

=  and lim ( )
x a

g x M
→

= , then [ ]lim ( ) ( )
x a

f x g x L M
→

+ = + . 

 

Proof:  Let 0ε > .  Then by previous proof, there exists a common 0δ >  such that if 

0 x a δ< − < , then ( )
2

f x L ε
− <  and ( )

2
g x M ε

− < .  Hence, by the triangle inequality, 

( )( ) ( ) ( ) ( ( ) ) ( ( ) ) ( ) ( ) .
2 2

f x g x L M f x L g x M f x L g x M ε ε ε+ − + = − + − ≤ − + − < + =   

Therefore, [ ]lim ( ) ( )
x a

f x g x L M
→

+ = + .   

a

b

a b+

a

b

a b+



Lesson 6 
 

Axioms for the Real Numbers 
 

One of the great achievements of modern mathematics was the establishment of 

axiomatic systems for all its major branches.  As a result, proofs are now simply logical 

consequences of the established definitions and axioms.  In many respects, we can think 

of these axioms as specifying the rules of the game that may be used to construct proofs.  

Below is one presentation of the axioms for the real number system, . 

 

Definition:  If A is a set, then * is a binary operation on A if for every ,a b A∈ , we have 

that *a b A∈ . 

 

The Algebraic Axioms: 

1. There exists a binary operation “+” on  such that for every ,a b∈ , a b+ ∈ .  

(Closure under Addition) 

2. For every , ,a b c∈ , ( ) ( )a b c a b c+ + = + + .  (Associative Law of Addition) 

3. There exists an element 0 in  such that for every a∈ , 0a a+ = .  (Existence of an 

Additive Identity) 

4. For every a∈ , there exists a− ∈  such that ( ) 0a a+ − = .  (Existence of Additive 

Inverses) 

5. For every ,a b∈ , a b b a+ = + .  (Commutative Law of Addition) 



6. There exists a binary operation “ ⋅ ” on  such that for every ,a b∈ , a b⋅ ∈ .  

(Closure under Multiplication) 

7.  For every , ,a b c∈ , ( ) ( )a b c a b c⋅ ⋅ = ⋅ ⋅ .  (Associative Law of Multiplication) 

8. There exists an element 1 in  that is not equal to 0 such that for every a∈ , 

1a a⋅ = .  (Existence of a Multiplicative Identity) 

9. For every nonzero a∈ , there exists 1a− ∈ , (called either the reciprocal of a or a-

inverse) such that 1 1a a−⋅ = .  (Existence of Multiplicative Inverses) 

10. For every ,a b∈ , a b b a⋅ = ⋅ .  (Multiplicative Law of Addition) 

11. For every , ,a b c∈ , ( )a b c a b a c⋅ + = ⋅ + ⋅ .  (The Distributive Law) 

 

Notation:  For convenience, we will often write a b⋅  as ab . 

 

The Order Axioms: 

There exists a subset P ⊂  (called the set of positive real numbers) satisfying the 

following: 

1. The set P is closed under addition. 

2. The set P is closed under multiplication. 

3. For every a∈ , exactly one of the following holds: 0a =  or a P∈  or a P− ∈ .  (the 

Law of Trichotomy) 

 

Definition:   

1. a b> if and only if a b P− ∈ . 

2. a b≥ means that either a b>  or a b= . 



3. a b< if and only if b a P− ∈ . 

4. a b≤ means that either a b<  or a b= . 

 

Definition:  If A⊆  and if b∈  such that for every a A∈ , we have that b a≥ , then b is 

an upper bound for the set A. 

 

Definition:  If A⊆ , then b∈  is a least upper bound for A if b is an upper bound and 

if for every other upper bound c of A, we have that b c≤ . 

 

Completeness Axiom:  Every nonempty set A⊆  with an upper bound b has a least 

upper bound. 

 

It can be shown that the only set which satisfies all three sets of axioms (the algebraic 

axioms, the order axioms, and the completeness axiom) is the familiar set of real numbers.  

Below, you will use the axioms for the real number system to prove several familiar 

properties.  As you do so, keep in mind that the axioms are essentially the rules for a 

game, and they tell us what moves are legal.  Thus, we can only perform a move if it is 

permitted by the axioms or by some theorem that we have already derived from the 

axioms.  For example, at this point all that a−  means is “the additive inverse of a,” and 

something that we generally take for granted such as ( )a a− − =  is now going to be a 

theorem that we have prove as a consequence of our axioms. 

 



1. Prove:  0 a a+ =  

 

2. Prove:  1 a a⋅ =  

 

3. Prove:   The additive identity element 0 is unique. 

 

4. Prove:  The multiplicative identity element 1 is unique. 

 

5. Prove:  Additive inverses are unique. 

 

6. Prove:  Multiplicative inverses are unique. 

 

7. Prove:  For every a∈ , 0 0 0a a⋅ = = ⋅ . 

 

8. Prove:  For every a∈ , ( )a a− − = . 

 

9. Prove:  For every a∈ , ( ) ( 1)a a− = − ⋅ . 

 

10. Prove:  For every ,a b∈ , ( ) ( )a b ab− = − . 



Lesson 6 – Answers 
 

Axioms for the Real Numbers 
 

One of the great achievements of modern mathematics was the establishment of 

axiomatic systems for all its major branches.  As a result, proofs are now simply logical 

consequences of the established definitions and axioms.  In many respects, we can think 

of these axioms as specifying the rules of the game that may be used to construct proofs.  

Below is one presentation of the axioms for the real number system, . 

 

Definition:  If A is a set, then * is a binary operation on A if for every ,a b A∈ , we have 

that *a b A∈ . 

 

The Algebraic Axioms: 

1. There exists a binary operation “+” on  such that for every ,a b∈ , a b+ ∈ .  

(Closure under Addition) 

2. For every , ,a b c∈ , ( ) ( )a b c a b c+ + = + + .  (Associative Law of Addition) 

3. There exists an element 0 in  such that for every a∈ , 0a a+ = .  (Existence of an 

Additive Identity) 

4. For every a∈ , there exists a− ∈  such that ( ) 0a a+ − = .  (Existence of Additive 

Inverses) 

5. For every ,a b∈ , a b b a+ = + .  (Commutative Law of Addition) 



6. There exists a binary operation “ ⋅ ” on  such that for every ,a b∈ , a b⋅ ∈ .  

(Closure under Multiplication) 

7.  For every , ,a b c∈ , ( ) ( )a b c a b c⋅ ⋅ = ⋅ ⋅ .  (Associative Law of Multiplication) 

8. There exists an element 1 in  that is not equal to 0 such that for every a∈ , 

1a a⋅ = .  (Existence of a Multiplicative Identity) 

9. For every nonzero a∈ , there exists 1a− ∈ , (called either the reciprocal of a or a-

inverse) such that 1 1a a−⋅ = .  (Existence of Multiplicative Inverses) 

10. For every ,a b∈ , a b b a⋅ = ⋅ .  (Multiplicative Law of Addition) 

11. For every , ,a b c∈ , ( )a b c a b a c⋅ + = ⋅ + ⋅ .  (The Distributive Law) 

 

Notation:  For convenience, we will often write a b⋅  as ab . 

 

The Order Axioms: 

There exists a subset P ⊂  (called the set of positive real numbers) satisfying the 

following: 

1. The set P is closed under addition. 

2. The set P is closed under multiplication. 

3. For every a∈ , exactly one of the following holds: 0a =  or a P∈  or a P− ∈ .  (the 

Law of Trichotomy) 

 

Definition:   

1. a b> if and only if a b P− ∈ . 

2. a b≥ means that either a b>  or a b= . 



3. a b< if and only if b a P− ∈ . 

4. a b≤ means that either a b<  or a b= . 

 

Definition:  If A⊆  and if b∈  such that for every a A∈ , we have that b a≥ , then b is 

an upper bound for the set A. 

 

Definition:  If A⊆ , then b∈  is a least upper bound for A if b is an upper bound and 

if for every other upper bound c of A, we have that b c≤ . 

 

Completeness Axiom:  Every nonempty set A⊆  with an upper bound b has a least 

upper bound. 

 

It can be shown that the only set which satisfies all three sets of axioms (the algebraic 

axioms, the order axioms, and the completeness axiom) is the familiar set of real numbers.  

Below, you will use the axioms for the real number system to prove several familiar 

properties.  As you do so, keep in mind that the axioms are essentially the rules for a 

game, and they tell us what moves are legal.  Thus, we can only perform a move if it is 

permitted by the axioms or by some theorem that we have already derived from the 

axioms.  For example, at this point all that a−  means is “the additive inverse of a,” and 

something that we generally take for granted such as ( )a a− − =  is now going to be a 

theorem that we have prove as a consequence of our axioms. 

 



1. Prove:  0 a a+ =  

 

Proof:  By our axioms, 0a a+ =  and a b b a+ = + .  Hence, 0 0a a a+ = + = .   

 

2. Prove:  1 a a⋅ =  

 

Proof:  By our axioms, 1a a⋅ =  and a b b a⋅ = ⋅ .  Hence, 1 1a a a⋅ = ⋅ = .   

 

3. Prove:   The additive identity element 0 is unique. 

 

Proof:  Suppose 0′  is also an additive identity element.  Then it follows that 

0 0 0 0′ ′= + = .  Therefore, the additive identity element is unique.   

 

4. Prove:  The multiplicative identity element 1 is unique. 

 

Proof:  Suppose 1′  is also a multiplicative identity element.  Then it follows that 

1 1 1 1′ ′= ⋅ = .  Therefore, the multiplicative identity element is unique.   

 

5. Prove:  Additive inverses are unique. 

 

Proof:  Suppose that a−  and a′−  are both additive inverses of a.  Then 

[ ] [ ]0 ( ) ( ) 0 0 .a a a a a a a a a a a a a a′ ′ ′ ′− + = = − + ⇒ − + + − = − + + − ⇒ − + = − + ⇒ − = −   



Therefore, additive inverses are unique.   

 

6. Prove:  Multiplicative inverses are unique. 

 

Proof:  Suppose 1a−  and 1a− ′  are both multiplicative inverses of a.  Then 

1 1 1 1 1 1 1 1 1 11 ( ) ( ) 1 1a a a a a aa a aa a a a a− − − − − − − − − −′ ′ ′ ′= = ⇒ = ⇒ ⋅ = ⋅ ⇒ = .  Therefore, 

multiplicative inverses are unique.   

 

7. Prove:  For every a∈ , 0 0 0a a⋅ = = ⋅ . 

 

Proof:  Let a∈ .  Then 0 (0 0) 0 0 0 0 0a a a a a a⋅ = + = ⋅ + ⋅ ⇒ = ⋅ = ⋅ .   

 

8. Prove:  For every a∈ , ( )a a− − = . 

 

Proof:  Let a∈ .  Then ( ) ( ) 0 ( ) is an additive inverse of ( )a a a a a a− − + − = ⇒ − − ⇒ − − =  

since additive inverses are unique.   

 

9. Prove:  For every a∈ , ( ) ( 1)a a− = − ⋅ . 

 

Proof:  Let a∈ .  Then ( 1) ( 1) 1 ( 1 1) 0 0 ( 1)a a a a a a a a− ⋅ + = − ⋅ + ⋅ = − + ⋅ = ⋅ = ⇒ − ⋅ = −  

since additive inverses are unique.   

 



10. Prove:  For every ,a b∈ , ( ) ( )a b ab− = − . 

 

Proof:  Let ,a b∈ .  Then ( ) ( ) 0 0 ( ) ( )a b ab a a b b a b ab− + = − + = ⋅ = ⇒ − = −  since 

additive inverses are unique.   



Lesson 7 
 

Everything Else that I Forgot to Mention 
 

If A and B are sets, then the Cartesian product of A and B is defined as 

( ){ }, and A B a b a A b B× = ∈ ∈ .  In other words, the Cartesian product of the two sets is the 

set of all ordered pairs that can be formed by pairing elements of the first set with 

elements of the second set.  For example, using this definition, we can think of the 

coordinate plane as just the Cartesian product of the real numbers with the real numbers, 

× .  Additionally, this construction is going to allow us to give a more abstract 

definition of things we are already familiar with such as functions. 

 

Anytime you see something in mathematics called Cartesian, you know it is being named 

after René Descartes (1596 – 1650).  During his lifetime, he was famous both as a 

philosopher and as a mathematician.  He also worked as a mercenary soldier.  It was a 

time when mathematicians were more like Rambo.  Furthermore, he died at age 53 as a 

result of getting up too early in the morning.  Hey!  I don’t make these things up!  

  

 

A relation in A B×  is any subset of A B× .  For example, in ×  the subset 

( ){ },  and  and L a b a b a b= ∈ ∈ <  shows how we can represent the familiar relation 

“less than” in terms of a Cartesian product. 

 



A function in A B×  is a relation F such that if ( )1,x y  and ( )2,x y  belong to F, then 1 2y y= .  

This is probably a very fancy way of saying something that you already know.  Namely, 

that a function can’t take a single element from its domain and pair it with more than one 

element in its range. 

 

The equal sign was invented by the Welsh mathematician Robert Recorde in 1557, and 

since it consists of two parallel lines of equal length ( )= , Recorde felt that there was no 

symbol better suited for denoting equality.  Later mathematicians noted that equality has 

certain properties that we now call the reflexive property ( )a a= , the symmetric property 

( )If ,  then a b b a= = , and the transitive property ( )If  and ,  then a b b c a c= = = , and from 

these properties they abstracted to define an equivalence relation. 

 

If A is a set and E is a relation in A A× , then E is called an equivalence relation if the 

following conditions are met: 

1. ( ), ,x A x x E∀ ∈ ∈ .  (reflexive) 

2. ( ) ( ), , if , ,  then ,x y A x y E y x E∀ ∈ ∈ ∈ .  (symmetric) 

3. ( ) ( ) ( ), , , if ,  and , ,  then ,x y z A x y E y z E x z E∀ ∈ ∈ ∈ ∈ .  (transitive) 

 

If we are given for some set A an element a and an equivalence relation E in A A× , then 

the set of all elements of A that are equivalent to a is called the equivalence class of a.  I 

won’t go into detail here, but suffice it to say that the concept of an equivalence class is 

one of the deepest and furthest reaching in all of mathematics.  We can literally change 



our reality through what things we see as equivalent with one another.  For example, we 

don’t see even numbers until we see integers that are divisible by 2 as being “equivalent.”  

Similarly, we don’t see the forest until we see what makes one tree equivalent to another, 

and by making the two ends of a string equivalent to one another, we can turn a line 

segment into a circle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If G is a set and if we have a function that goes from G G G× → , then we call this type of 

function a binary operation.  When we have such a function, we don’t normally use the 

( , )f a b  type of notation.  Instead, we use maybe a symbol such as * for this operation and 

 A BA B

 A B=A B=



write something like *a b .  For example, we can interpret “+” as a binary operation from 

× → , and we commonly write things as 2 3 5+ =  rather than (2,3) 5f = . 

 

Using our definition of a binary operation and just a few of the algebraic properties for 

the real numbers, we can now define the concept of a group which is one of the most 

important algebraic structures of higher mathematics.  Because there are so many things 

in the world of mathematics that are groups, a single theorem about groups applies to 

many different situations. 

 

Let G be a non-empty set and let * be a binary operation defined on G G× .  Then G is a 

group if the following axioms are satisfied. 

1. For every ,a b G∈ , *a b G∈ .  (closure) 

2. For every , ,a b c G∈ , * ( * ) ( * ) *a b c a b c= .  (associativity) 

3. There exists an element e G∈  such that for every a G∈ , * *e a a a e= = .  (identity) 

4. For every a G∈  there exists 1a G− ∈  such that 1 1* *a a e a a− −= = .  (inverses) 

 

If the following additional property holds, then we call G a commutative or abelian group. 

5. For every ,a b G∈ , * *a b b a= .  (commutativity) 

 

Again, the concept of a group is far reaching, and as you’ll see in the exercises, groups 

are also associated with permutations and symmetry. 

 

 



1. If { }1,2,3A =  and { }4,5B = , find A B× , B A× , and B B× . 

 

2. Seven Brides for Seven Brothers 

Let B be the set of brothers in this popular movie musical, and let 

( ){ }, ,  and &  are brothersE a b a b B a b= ∈ .  Is E a relation in B B× ?  If so, then is E an 

equivalence relation?  Why or why not? 

 

3. Read the article in the Wikipedia on René Descartes.  Everyone should know 

something about Descartes. 

 

4. To learn more about groups, go to www.docbenton.com and read as much as you can 

of Doc Benton’s Fantastic Guide to Group Theory, Rubik’s Cube, Permutations, 

Symmetry, and All That Is!.  If you want, you can skip the chapters on Rubik’s cube 

and focus only on those on group theory.  This should give you a pretty good 

introduction to the subject.  Enjoy! 



Lesson 7 – Answers 
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If A and B are sets, then the Cartesian product of A and B is defined as 
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elements of the second set.  For example, using this definition, we can think of the 

coordinate plane as just the Cartesian product of the real numbers with the real numbers, 

× .  Additionally, this construction is going to allow us to give a more abstract 

definition of things we are already familiar with such as functions. 

 

Anytime you see something in mathematics called Cartesian, you know it is being named 

after René Descartes (1596 – 1650).  During his lifetime, he was famous both as a 

philosopher and as a mathematician.  He also worked as a mercenary soldier.  It was a 

time when mathematicians were more like Rambo.  Furthermore, he died at age 53 as a 

result of getting up too early in the morning.  Hey!  I don’t make these things up!  

  

 

A relation in A B×  is any subset of A B× .  For example, in ×  the subset 

( ){ },  and  and L a b a b a b= ∈ ∈ <  shows how we can represent the familiar relation 

“less than” in terms of a Cartesian product. 

 



A function in A B×  is a relation F such that if ( )1,x y  and ( )2,x y  belong to F, then 1 2y y= .  

This is probably a very fancy way of saying something that you already know.  Namely, 

that a function can’t take a single element from its domain and pair it with more than one 

element in its range. 

 

The equal sign was invented by the Welsh mathematician Robert Recorde in 1557, and 

since it consists of two parallel lines of equal length ( )= , Recorde felt that there was no 

symbol better suited for denoting equality.  Later mathematicians noted that equality has 

certain properties that we now call the reflexive property ( )a a= , the symmetric property 

( )If ,  then a b b a= = , and the transitive property ( )If  and ,  then a b b c a c= = = , and from 

these properties they abstracted to define an equivalence relation. 

 

If A is a set and E is a relation in A A× , then E is called an equivalence relation if the 

following conditions are met: 

1. ( ), ,x A x x E∀ ∈ ∈ .  (reflexive) 

2. ( ) ( ), , if , ,  then ,x y A x y E y x E∀ ∈ ∈ ∈ .  (symmetric) 

3. ( ) ( ) ( ), , , if ,  and , ,  then ,x y z A x y E y z E x z E∀ ∈ ∈ ∈ ∈ .  (transitive) 

 

If we are given for some set A an element a and an equivalence relation E in A A× , then 

the set of all elements of A that are equivalent to a is called the equivalence class of a.  I 

won’t go into detail here, but suffice it to say that the concept of an equivalence class is 

one of the deepest and furthest reaching in all of mathematics.  We can literally change 



our reality through what things we see as equivalent with one another.  For example, we 

don’t see even numbers until we see integers that are divisible by 2 as being “equivalent.”  

Similarly, we don’t see the forest until we see what makes one tree equivalent to another, 

and by making the two ends of a string equivalent to one another, we can turn a line 

segment into a circle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If G is a set and if we have a function that goes from G G G× → , then we call this type of 

function a binary operation.  When we have such a function, we don’t normally use the 

( , )f a b  type of notation.  Instead, we use maybe a symbol such as * for this operation and 

 A BA B

 A B=A B=



write something like *a b .  For example, we can interpret “+” as a binary operation from 

× → , and we commonly write things as 2 3 5+ =  rather than (2,3) 5f = . 

 

Using our definition of a binary operation and just a few of the algebraic properties for 

the real numbers, we can now define the concept of a group which is one of the most 

important algebraic structures of higher mathematics.  Because there are so many things 

in the world of mathematics that are groups, a single theorem about groups applies to 

many different situations. 

 

Let G be a non-empty set and let * be a binary operation defined on G G× .  Then G is a 

group if the following axioms are satisfied. 

1. For every ,a b G∈ , *a b G∈ .  (closure) 

2. For every , ,a b c G∈ , * ( * ) ( * ) *a b c a b c= .  (associativity) 

3. There exists an element e G∈  such that for every a G∈ , * *e a a a e= = .  (identity) 

4. For every a G∈  there exists 1a G− ∈  such that 1 1* *a a e a a− −= = .  (inverses) 

 

If the following additional property holds, then we call G a commutative or abelian group. 

5. For every ,a b G∈ , * *a b b a= .  (commutativity) 

 

Again, the concept of a group is far reaching, and as you’ll see in the exercises, groups 

are also associated with permutations and symmetry. 

 

 



1. If { }1,2,3A =  and { }4,5B = , find A B× , B A× , and B B× . 

{ }(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)A B× =  

{ }(4,1),(5,1),(4,2),(5,2),(4,3),(5,3)B A× =  

{ }(4,4),(4,5),(5,4),(5,5)B B× =  

 

2. Seven Brides for Seven Brothers 

Let B be the set of brothers in this popular movie musical, and let 

( ){ }, ,  and &  are brothersE a b a b B a b= ∈ .  Is E a relation in B B× ?  If so, then is E an 

equivalence relation?  Why or why not? 

 

The seven brothers from the musical are Adam, Benjamin, Gideon, Frank, Daniel, 

Caleb, and Ephraim.  The set E is a relation in B B× , but it’s not an equivalence 

relation.  It is symmetric since if Adam is a brother of Benjamin, then Benjamin is a 

brother of Adam.  It is also transitive since Adam is a brother of Benjamin and 

Benjamin is a brother of Gideon implies that Adam is a brother of Gideon.  However, 

it is not reflexive since Adam is not a brother of Adam. 

 

3. Read the article in the Wikipedia on René Descartes.  Everyone should know 

something about Descartes. 

 

I read it.  It’s great! 

 



4. To learn more about groups, go to www.docbenton.com and read as much as you can 

of Doc Benton’s Fantastic Guide to Group Theory, Rubik’s Cube, Permutations, 

Symmetry, and All That Is!.  If you want, you can skip the chapters on Rubik’s cube 

and focus only on those on group theory.  This should give you a pretty good 

introduction to the subject.  Enjoy! 

 

I not only read it, I wrote it! 



 
This work is licensed under a Creative Commons Attribution-NonCommercial-

NoDerivs 3.0 Unported License. 
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